Andrea G Cochran

Learn More
A structural motif, the tryptophan zipper (trpzip), greatly stabilizes the beta-hairpin conformation in short peptides. Peptides (12 or 16 aa in length) with four different turn sequences are monomeric and fold cooperatively in water, as has been observed previously for some hairpin peptides. However, the folding free energies of the trpzips exceed(More)
The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we(More)
The Polycomb repressive complex 1 (PRC1) mediates gene silencing, in part by monoubiquitination of histone H2A on lysine 119 (uH2A). Bmi1 and Ring1b are critical components of PRC1 that heterodimerize via their N-terminal RING domains to form an active E3 ubiquitin ligase. We have determined the crystal structure of a complex between the Bmi1/Ring1b(More)
The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells.(More)
Wnt/beta-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In(More)
The recent rapid growth of protein sequence databases is outpacing the capacity of researchers to biochemically and structurally characterize new proteins. Accordingly, new methods for recognition of motifs and homologies in protein primary sequences may be useful in determining how these proteins might function. We have applied such a method, an iterative(More)
Bromodomains are epigenetic readers that are recruited to acetyllysine residues in histone tails. Recent studies have identified non-acetyl acyllysine modifications, raising the possibility that these might be read by bromodomains. Profiling the nearly complete human bromodomain family revealed that while most human bromodomains bind only the shorter acetyl(More)
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify(More)
Peptides that inhibit binding of vascular endothelial growth factor (VEGF) to its receptors, KDR and Flt-1, have been produced using phage display. Libraries of short disulfide-constrained peptides yielded three distinct classes of peptides that bind to the receptor-binding domain of VEGF with micromolar affinities. The highest affinity peptide was also(More)
Amino acid structural propensities measured in "host-guest" model studies are often used in protein structure prediction or to choose appropriate residues in de novo protein design. While this concept has proven useful for helical structures, it is more difficult to apply successfully to beta-sheets. We have developed a cyclic beta-hairpin scaffold as a(More)