Learn More
We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J. A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79,(More)
We created hierarchically ordered structures of nanoparticles on smooth plan ar hydrophilic substrates by drying colloidal dispersions in confinement under macroscopic stamps with microscopically wrinkled surfaces. Experiments were carried out with model nano-particle suspensions that possess high colloidal stability and mono-dispersity. The structures(More)
We study the phase behaviour of hard spheres confined between two parallel hard plates using extensive computer simulations. We determine the full equilibrium phase diagram for arbitrary densities and plate separations from one to five hard-sphere diameters using free energy calculations. We find a first-order fluid-solid transition, which corresponds to(More)
In simulations and experiments, we study the drying of films containing mixtures of large and small colloidal particles in water. During drying, the mixture stratifies into a layer of the larger particles at the bottom with a layer of the smaller particles on top. We developed a model to show that a gradient in osmotic pressure, which develops dynamically(More)
When fabricating photonic crystals from suspensions in volatile liquids using the horizontal deposition method, the conventional approach is to evaporate slowly to increase the time for particles to settle in an ordered, periodic close-packed structure. Here, we show that the greatest ordering of 10 nm aqueous gold nanoparticles (AuNPs) in a template of(More)
A combined molecular dynamics and finite element model and simulation of contact and adhesion between a rough sphere and a flat surface has been developed. This model uses the results of molecular dynamics (MD) simulations, obtained using an embedded atom potential, of a nanoscale Ru-Ru asperity contact. A continuum finite element model of an(More)
We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a(More)
  • 1