Andrea D. Thompson

Learn More
Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and(More)
The molecular chaperone DnaK binds to exposed hydrophobic segments in proteins, protecting them from aggregation. DnaK interacts with protein substrates via its substrate-binding domain, and the affinity of this interaction is allosterically regulated by its nucleotide-binding domain. In addition to regulating interdomain allostery, the nucleotide state has(More)
The heat shock protein 70 (Hsp70) family of molecular chaperones has important functions in maintaining proteostasis under stress conditions. Several Hsp70 isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response to stress; however, it is unclear whether these family members have biochemical properties that are specifically adapted to(More)
The EWS/FLI1 fusion protein is created by the translocation between chromosomes 11 and 22 that appears in most Ewing's sarcomas. This chimeric protein has been demonstrated to be an aberrant transcription factor. Genes up regulated by EWS/FLI1 but not by full-length FLI1 were identified by representational difference analysis (RDA). We have characterized a(More)
Ewing's sarcoma is the least differentiated member of the peripheral primitive neuroectodermal (pPNET) tumor family. Chromosomal translocations involving the EWS gene and five different Ets family transcription factor genes create fusion genes encoding aberrant transcription factors and are implicated in the vast majority of Ewing's sarcoma cases. Here, NIH(More)
Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB)(More)
Nine neurodegenerative disorders are caused by the abnormal expansion of polyglutamine (polyQ) regions within distinct proteins. Genetic and biochemical evidence has documented that the molecular chaperone, heat shock protein 70 (Hsp70), modulates polyQ toxicity and aggregation, yet it remains unclear how Hsp70 might be used as a potential therapeutic(More)
The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and(More)
Expression of the recombination activating genes, RAG-1 and RAG-2, in lymphocytes, has been shown to depend on second messenger systems. An increase in intracellular cAMP upon stimulation with caffeine increases RAG expression while activation of protein kinase C (PKC) with phorbol myristate acetate (PMA) results in decreased RAG expression. The stringent(More)
Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that(More)