Learn More
We give arguments for the existence of exact travelling-wave (in particular solitonic) solutions of a perturbed sine-Gordon equation on the real line or on the circle, and classify them. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. Such solutions are allowed exactly by the energy balance of these terms,(More)
Aromatics growth beyond 2-, 3-ring PAH is analyzed through a radical-molecule reaction mechanism which, in combination with a previously developed PAH model, is able to predict the size distribution of aromatic structures formed in rich premixed flames of ethylene at atmospheric pressure with C/O ratios across the soot threshold limit. Modeling results are(More)
Soot formation in combustion represents a complex phenomenon that strongly depends on several factors such as pressure, temperature, fuel chemical composition, and the extent of premixing. The effect of partial premixing on soot formation is of relevance also for real combustion devices and still needs to be fully understood. An improved version of the(More)
Although mass emissions of combustion-generated particulate matter have been substantially reduced by new combustion technology, there is still a great concern about the emissions of huge numbers of sub-10 nm particles with insignificant mass. These particles have up to orders of magnitude higher surface area to mass ratios compared to larger particles,(More)
We find some new results regarding the existence, uniqueness, boundedness, stability and attractivity of the solutions of a class of initial-boundary-value problems characterized by a quasi-linear third order equation which may have non-autonomous forcing terms. The class includes equations arising in superconductor theory, quantum mechanics and in the(More)
Recent advances in gas turbine combustor design are aimed at achieving low exhaust emissions, hence modern aircraft jet engines are designed with lean-burn combustion systems. In the present work, we report an experimental study on lean combustion in a liquid fuel burner, operated under a non-premixed (single point injection) regime that mimics the(More)
As combustion generated nano-organic particles (NOC) may pose significant health and environmental problems, there is great scientific interest in studying their formation and evolution in turbulent combustion systems. Traditional approaches to turbulent combustion numerical modeling apply Reynolds averaging techniques (RANS) to predict the behavior of the(More)
Ultrafine particles (UFP) generated by combustion processes are often associated with adverse health effects. However, little is known about the inflammatory processes generated by UFP that may underlie their toxicological activity. Murine macrophages (J774.1 cells) and human peripheral blood mononuclear cells (PBMCs) were used to evaluate the molecular(More)
  • 1