Learn More
Jasmonates are essential phytohormones for plant development and survival. However, the molecular details of their signalling pathway remain largely unknown. The identification more than a decade ago of COI1 as an F-box protein suggested the existence of a repressor of jasmonate responses that is targeted by the SCF(COI1) complex for proteasome degradation(More)
Discovery of the jasmonate ZIM-domain (JAZ) repressors defined the core jasmonate (JA) signalling module as COI1-JAZ-MYC2, and allowed a full view of the JA signalling pathway from hormone perception to transcriptional reprogramming. JAZ proteins are repressors of MYC2 and targets of SCF(COI1), which is the likely jasmonate receptor. Upon hormone(More)
Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By(More)
Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCF(COI1)-mediated proteasome degradation of JAZ repressors. (-)-JA-L-Ile is the proposed bioactive hormone, and SCF(COI1) is its likely receptor. We found that the biological activity of (-)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic(More)
Jasmonic acid (JA) and its derivates, collectively known as jasmonates (JAs), are essential signalling molecules that coordinate the plant response to biotic and abiotic challenges, in addition to several developmental processes. The COI1 F-box and additional SCF modulators have long been known to have a crucial role in the JA-signalling pathway. Downstream(More)
An activation-tagged allele of activated disease resistance 1 (ADR1) has previously been shown to convey broad spectrum disease resistance. ADR1 was found to encode a coiled-coil (CC)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) protein, which possessed domains of homology with serine/threonine protein kinases. Here, we show that either(More)
A transgenic Arabidopsis line containing a chimeric PR-1::luciferase (LUC) reporter gene was subjected to mutagenesis with activation tags. Screening of lines via high-throughput LUC imaging identified a number of dominant Arabidopsis mutants that exhibited enhanced PR-1 gene expression. Here, we report the characterization of one of these mutants,(More)
Jasmonates (JAs) are essential hormones for plant defense and development. In spite of their importance, the molecular details of their signaling pathways remain largely unknown. A new family of regulators of JA signaling named JAZ, jasmonate ZIM-domain proteins, has recently been described. JAZ proteins repress of JA signaling and are targeted by the(More)
Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to(More)
Reduction of the red/far-red (R/FR) light ratio that occurs in dense canopies promotes plant growth to outcompete neighbors but has a repressive effect on jasmonate (JA)-dependent defenses. The molecular mechanism underlying this trade-off is not well understood. We found that the JA-related transcription factors MYC2, MYC3, and MYC4 are short-lived(More)