Learn More
Although the improvement in WM performance with cholinergic enhancement was a nonsignificant trend in the current study (P ϭ 0.07), in a previous study (9) with a larger sample (n ϭ 13) the effect was highly significant (P Ͻ 0.001). In the current study, we analyzed RT data for six of our seven subjects because the behavioral data for one subject were(More)
Orbitofrontal cortex (OFC) is part of a network of structures involved in adaptive behavior and decision making. Interconnections between OFC and basolateral amygdala (ABL) may be critical for encoding the motivational significance of stimuli used to guide behavior. Indeed, much research indicates that neurons in OFC and ABL fire selectively to cues based(More)
Reciprocal connections between the orbitofrontal cortex and the basolateral nucleus of the amygdala may provide a critical circuit for the learning that underlies goal-directed behavior. We examined neural activity in rat orbitofrontal cortex and basolateral amygdala during instrumental learning in an olfactory discrimination task. Neurons in both regions(More)
The contribution of the basal forebrain cholinergic system in mediating plasticity of cortical sensorimotor representations was examined in the context of normal learning. The effects of specific basal forebrain cholinergic lesions upon cortical reorganization associated with learning a skilled motor task were investigated, addressing, for the first time,(More)
The amygdala complex has long been known as part of the neural circuitry critical for emotion. Beyond its role in emotional reactivity, studies of animal models and patients with amygdala damage demonstrate its importance in emotional learning, whereby cues acquire significance through association with rewarding or aversive events. Although its function in(More)
A reorganization of cortical representations is postulated as the basis for functional recovery following many types of nervous system injury. Neuronal mechanisms underlying this form of cortical plasticity are poorly understood. The present study investigated the hypothesis that the basal forebrain cholinergic system plays an essential role in enabling the(More)
Magnocellular neurons in the basal forebrain provide the major cholinergic innervation of cortex. Recent research suggests that this cholinergic system plays an important role in the regulation of attentional processes. The present study examined the ability of rats with selective immunotoxic lesions of these neurons (made with 192 IgG-saporin) to modulate(More)
Rats with medial prefrontal cortex, hippocampus, or cortical control lesions were tested on an eight-arm radial maze task, in order to examine memory for the temporal order of spatial locations as a function of temporal lag. During the study phase of each trial, rats were allowed to visit each of eight arms once in an order that was randomly selected for(More)
Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating(More)
Interconnections between orbitofrontal cortex (OFC) and basolateral amygdala (ABL) are critical for encoding and using associative information about the motivational significance of stimuli. Previously, we reported that neurons in OFC and ABL fired selectively to cues during odor discrimination learning and reversal training. Here we conducted an analysis(More)