Andrea Camposeo

Learn More
Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced(More)
Light-emitting electrospun nanofibers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-( N,N '-diphenyl)- N,N '-di(p-butyl-oxy-phenyl)-1,4-diaminobenzene)] (PFO-PBAB) are produced by electrospinning under different experimental conditions. In particular, uniform fibers with average diameter of 180 nm are obtained by adding an organic salt to the electrospinning(More)
Silica fi lms are widely used in many fi elds, such as coatings and functionalization layers for biomedical surfaces and tissue engineering, controlled drug delivery, transplants, cell adhesion, growth, and controlled differentiation. [ 1–6 ] Other applications include masters and moulds for soft and nanoimprint lithographies, [ 7 ] diagnostics, optics and(More)
Producing polymeric or hybrid microfluidic devices operating at high temperatures with reduced or no water evaporation is a challenge for many on-chip applications including polymerase chain reaction (PCR). We study sample evaporation in polymeric and hybrid devices, realized by glass microchannels for avoiding water diffusion toward the elastomer used for(More)
We introduce the integration of organic, polarised light-emitting electrospun nanofibers and lab-on-a-chip microchannel geometries. The alignment and spinning electric field leads to ordered mesoscopic active areas, up to many mm(2), which exhibit polarised light emission and are fully compatible with microlithographies and microfluidics. We utilise the(More)
We report on the experimental evidence of tilted polymer nanofiber rotation, using a highly focused linear polarized Gaussian beam. Torque is controlled by varying trapping power or fiber tilt angle. This suggests an alternative strategy to previously reported approaches for the rotation of nano-objects, to test fundamental theoretical aspects. We compare(More)
We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs) was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity(More)
Axial trapping through a dielectric interface is investigated in the framework of the angular spectrum representation and of the generalized Lorenz-Mie theory. We determine the optical force for an arbitrarily polarized non-paraxial, strongly aberrated, axially symmetric focusing beam and apply this description to the case of an arbitrarily positioned(More)
The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and(More)