Learn More
Extracellular nucleotides, signaling through P2 receptors, may act as local regulators of bone cell function. We investigated the effects of nucleotide agonists [ATP, ADP, uridine triphosphate (UTP), and uridine diphosphate] and pyrophosphate (PPi, a key physiological inhibitor of mineralization) on the deposition and mineralization of collagenous matrix by(More)
The negative effect of acidosis on the skeleton has been known for almost a century. Bone mineral serves an important pathophysiologic role as a reserve of hydroxyl ions to buffer systemic protons if the kidneys and lungs are unable to maintain acid-base balance within narrow physiologic limits. Extracellular hydrogen ions are now thought to be the primary(More)
We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was(More)
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part,(More)
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and(More)
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO(2)) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO(2) on formation of osteoclasts, the cells responsible for bone(More)
The prevailing view for many years has been that osteoclasts do not express parathyroid hormone (PTH) receptors and that PTH's effects on osteoclasts are mediated indirectly via osteoblasts. However, several recent reports suggest that osteoclasts express PTH receptors. In this study, we tested the hypothesis that human osteoclasts formed in vitro express(More)
Clopidogrel (Plavix), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast(More)
  • 1