Andrea A. Domenighetti

Learn More
The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the(More)
The cardiac sodium channel Na(v)1.5 plays a key role in cardiac excitability and conduction. The purpose of this study was to elucidate the role of the PDZ domain-binding motif formed by the last three residues (Ser-Ile-Val) of the Na(v)1.5 C-terminus. Pull-down experiments were performed using Na(v)1.5 C-terminus fusion proteins and human or mouse heart(More)
In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that(More)
We have demonstrated previously that deoxycorticosterone acetate (DOCA)/salt induces cardiac hypertrophy and left ventricular dysfunction independent of blood pressure (BP) in 1-renin gene mice. Because these mice also develop hypokalemia and metabolic alkalosis caused by mineralocorticoid excess, we investigated whether correcting hypokalemia by dietary(More)
Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery-Dreifuss muscular dystrophy. However, it remains to be clarified(More)
A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in(More)
of salt on cardiac differential gene expression and coronary lesion in normotensive mineralocorticoid-treated mice.—We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the(More)
  • 1