Andre Schiele

Learn More
This paper introduces a novel kinematic design paradigm for ergonomic human machine interaction. Goals for optimal design are formulated generically and applied to the mechanical design of an upper-arm exoskeleton. A nine degree-of-freedom (DOF) model of the human arm kinematics is presented and used to develop, test, and optimize the kinematic structure of(More)
This paper introduces the mechatronic design and a first performance analysis of a new haptic exoskeleton, the X-Arm-2. The X-Arm-2 is a fully actuated force-reflecting human arm exoskeleton that is based on our previously proposed approach to ergonomic and human-centered exoskeleton design [1] [2]. The X-Arm-2 is a highly power-dense impedance-type haptic(More)
This paper introduces a novel type of actuator that is investigated by ESA for force-reflection to a wearable exoskeleton. The actuator consists of a DC motor that is relocated from the joint by means of Bowden cable transmissions. The actuator shall support the development of truly ergonomic and compact wearable man-machine interfaces. Important Bowden(More)
  • Andre Schiele
  • 2008 IEEE International Conference on Robotics…
  • 2008
It is the goal of this paper to introduce an analytical model that allows predicting and interpreting the characteristics of constraint forces generated by misaligned joint axes between human operators and wearable robots during physical human-robot interaction (pHRI). The pHRI model is based on geometric parameters that describe the combined human-robot(More)
It is the goal of this paper to present performance differences between a Direct Drive master actuator (DD) and a Bowden Cable relocated master actuator (BCD) in a typical force-feedback tele-manipulation experiment with a virtual slave. The BCD actuator is a candidate actuator for implementation in a wearable exoskeleton, in order to reduce mass and(More)
This paper presents the development of SAM, the Sensoric Arm Master, a 7-DOF portable exoskeleton with integrated actuation and sensors. Local joint control is implemented to improve performances of the device. Some experiments have been conducted with the system to show the functionality of the exoskeleton device linked to a virtual reality.
This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is(More)