Andre R. O. Cavalcanti

Learn More
Ciliated protozoa have two kinds of nuclei: Macronuclei (MAC) and Micronuclei (MIC). In some ciliate classes, such as spirotrichs, most genes undergo several layers of DNA rearrangement during macronuclear development. Because of such processes, these organisms provide ideal systems for studying mechanisms of recombination and gene rearrangement. Here, we(More)
BACKGROUND Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of(More)
Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the(More)
UNLABELLED Scrambled genes are surprisingly common in some species of ciliates. Until now there was no software available to analyze automatically these genes. We present here a program that can automatically align the macronuclear and micronuclear forms of a gene, outputting the location of the macronuclear destined segments and pointer sequences. (More)
While all ciliates possess nuclear dimorphism, several ciliates - like those in the classes Phyllopharyngea, Spirotrichea, and Armophorea - have an extreme macronuclear organization. Their extensively fragmented macronuclei contain upwards of 20,000 chromosomes, each with upwards of thousands of copies. These features have evolved independently on multiple(More)
  • 1