Andre Estevez-Torres

  • Citations Per Year
Learn More
We report the experimental observation of traveling concentration waves and spirals in a chemical reaction network built from the bottom up. The mechanism of the network is an oscillator of the predator-prey type, and this is the first time that predator-prey waves have been observed in the laboratory. The molecular encoding of the nonequilibrium behavior(More)
We introduce a DNA-based reaction-diffusion (RD) system in which reaction and diffusion terms can be precisely and independently controlled. The effective diffusion coefficient of an individual reaction component, as we demonstrate on a traveling wave, can be reduced up to 2.7-fold using a self-assembled hydrodynamic drag. The intrinsic programmability of(More)
An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR,(More)
We report the splitting of an oscillating DNA circuit into ∼700 droplets with picoliter volumes. Upon incubation at constant temperature, the droplets display sustained oscillations that can be observed for more than a day. Superimposed to the bulk behaviour, we find two intriguing new phenomena - slow desynchronization between the compartments and(More)
To understand non-trivial biological functions, it is crucial to develop minimal synthetic models that capture their basic features. Here, we demonstrate a sequence-independent, reversible control of transcription and gene expression using a photosensitive nucleic acid binder (pNAB). By introducing a pNAB whose affinity for nucleic acids is tuned by light,(More)
Information stored in synthetic nucleic acids sequences can be used in vitro to create complex reaction networks with precisely programmed chemical dynamics. Here, we scale up this approach to program networks of microscopic particles (agents) dispersed in an enzymatic solution. Agents may possess multiple stable states, thus maintaining a memory and(More)
Molecular programming allows for the bottom-up engineering of biochemical reaction networks in a controlled in vitro setting. These engineered biochemical reaction networks yield important insight in the design principles of biological systems and can potentially enrich molecular diagnostic systems. The DNA polymerase-nickase-exonuclease (PEN) toolbox has(More)
We demonstrate a novel and robust microfluidic chip with combined functions of continuous culture and output of PC-3 prostate cancer cells. With digital controls, polydimethylsiloxane (PDMS) flexible diaphragms are able to apply hydrodynamic shear forces on cultures, detaching a fraction of attached cancer cells from the surface for output while leaving(More)
DNA origami is a powerful method to fold DNA into rationally designed nanostructures that holds great promise for bionanotechnology. However, the folding mechanism has yet to be fully resolved, principally due to a lack of data with single molecule resolution. To address this issue, we have investigated in detail, using atomic force microscopy, the(More)
Out-of-equilibrium chemical systems may self-organize into structures displaying spatiotemporal order, such as traveling waves and Turing patterns. Because of its predictable chemistry, DNA has recently appeared as an interesting candidate to engineer these spatiotemporal structures. However, in addition to the intrinsic chemical parameters, initial and(More)