Learn More
Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically(More)
Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications of TMS. Here, we start by delineating three main challenges(More)
Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric properties of the head tissues and electrode pads. Previous(More)
BACKGROUND Nail clipping analysis for diagnosing causes of onychodystrophy other than onychomycosis is investigated to a very small extent. In order to achieve acceptance as a diagnostic method for any kind of nail abnormalities, normal microscopic parameters have to be established first. In most reported cases, nail plates were fixed in formalin with(More)
Cataract is a multifactorial pathology, still, of unknown cause and high incidence in animals and humans. The many types of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). A classification has been established in the literature to determine the opacity levels. AFM has been applied in the(More)
  • 1