Andrés Ramírez Aguilera

Learn More
The essential yeast proteins Yra1 and Sub2 are messenger RNA export factors that have conserved counterparts in metazoans, designated Aly and UAP56, respectively. These factors couple the machineries that function in splicing and export of mRNA. Here we show that both Yra1 and Sub2 are stoichiometrically associated with the heterotetrameric THO complex,(More)
Genetic instability, a phenomenon relevant for developmentally regulated processes, cancer, and inherited disorders, can be induced by transcription. However, the mechanisms of transcription-associated genetic instability are not yet understood. Analysis of S. cerevisiae mutants of THO/TREX, a conserved eukaryotic protein complex functioning at the(More)
DNA double-strand breaks (DSBs) are repaired by two principal mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is the most accurate DSB repair mechanism but is generally restricted to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as a repair template. By contrast,(More)
RNA:DNA hybrid structures known as R loops were thought to be rare byproducts of transcription. In the last decade, however, accumulating evidence has pointed to a new view in which R loops form more frequently, impacting transcription and threatening genome integrity as a source of chromosome fragility and a potential cause of disease. Not surprisingly,(More)
Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability--among them are replication, repair and S-phase checkpoint(More)
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA(More)
Transcription-induced recombination has been reported in all organisms from bacteria to mammals. We have shown previously that the yeast genes HPR1 and THO2 may be keys to the understanding of transcription-associated recombination, as they both affect transcription elongation and hyper-recombination in a concerted manner. Using a yeast strain that has the(More)
The THO complex is a multimeric factor containing four polypeptides, Tho2, Hpr1, Mft1 and Thp2. Mutations in any of the genes encoding THO confer impairment of transcription and a transcription-dependent hyper-recombination phenotype, suggesting that THO has a functional role in gene expression. Using an in vivo assay developed to study expression of long(More)
Increasing evidences suggest that nuclear pore complexes (NPCs) control different aspects of nuclear metabolism, including transcription, nuclear organization, and DNA repair. We previously established that the Nup84 complex, a major NPC building block, is part of a genetic network involved in DNA repair. Here, we show that double-strand break (DSB)(More)
THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription-associated recombination. Whether or not it has a ubiquitous role in the genome is unknown. Chromatin immunoprecipitation (ChIP)-chip studies reveal that the Hpr1 component of THO and the Sub2 RNA-dependent ATPase have genome-wide distributions at active(More)