Andrés Márquez

Learn More
Floating-point operations, as defined in the IEEE-754 standard, are not associative. The ordering of large numbers of operations (such as summa-tions) that deal with operands of substantially different magnitudes can significantly affect the final result. On massively multi-threaded systems, the non-deterministic nature of how machine floating-point(More)
As data centers proliferate in size and number, the endeavor to improve their energy efficiency and productivity is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful(More)
There is no doubt that the concept of volume holography has led to an incredibly great amount of scientific research and technological applications. One of these applications is the use of volume holograms as optical memories, and in particular, the use of a photosensitive medium like a photopolymeric material to record information in all its volume. In(More)
Phase diffractive optical elements, which have many interesting applications, are usually fabricated using a photoresist. In this paper, they were made using a hybrid optic-digital system and a photopolymer as recording medium. We analyzed the characteristics of the input and recording light and then simulated the generation of blazed gratings with(More)
A polarimetric method for the measurement of linear retardance in the presence of phase fluctuations is presented. This can be applied to electro-optic devices behaving as variable linear retarders. The method is based on an extended Mueller matrix model for the linear retarder containing the time-averaged effects of the instabilities. As a result, an(More)
In this work a unified treatment of solid and fluid vibration problems is developed by means of the Finite-Difference Time-Domain (FDTD). The scheme here proposed takes advantage from a scaling factor in the velocity fields that improves the performance of the method and the vibration analysis in heterogenous media. Moreover, the scheme has been extended in(More)
The present paper describes an optimized C++ library for the study of electromagnetics. The implementation is based on the Finite-Difference Time-Domain method for transient analysis, and the Finite Element Method for electrostatics. Both methods share the same core and are optimized for CPU and GPU computing. To illustrate its running, FEM method is(More)
  • 1