Andrés Márquez

Learn More
We apply He's homotopy perturbation method to find improved approximate solutions to conservative truly nonlinear oscillators. This approach gives us not only a truly periodic solution but also the period of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters in the case of the(More)
In this paper we provide evidence of the temporal fluctuations of the phase modulation property of a liquid crystal on silicon (LCoS) display, and we analyze its effect when the device is used for displaying a diffractive optical element. We use a commercial twisted nematic LCoS display configured to produce a phase-only modulation, and we provide time(More)
As data centers proliferate in size and number, the endeavor to improve their energy efficiency and productivity is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful(More)
We apply the polar decomposition of the Mueller matrix describing a liquid-crystal-on-silicon display to identify the diattenuator, depolarizer, and retarder contributions as a function of the gray level. The retarder contribution is expressed in terms of the equivalent Jones matrix to apply previous techniques to evaluate the phase modulation. This allows(More)
We characterize the optical modulation properties of a polyvinyl alcohol/acrylamide (PVA/AA) photopolymer at the lowest end of recorded spatial frequencies. To achieve this goal we have constructed a double beam interferometer in combination with the setup to expose the recording material. This is a novel approach since usually holographic recording(More)
There is no doubt that the concept of volume holography has led to an incredibly great amount of scientific research and technological applications. One of these applications is the use of volume holograms as optical memories, and in particular, the use of a photosensitive medium like a photopolymeric material to record information in all its volume. In(More)
We present a new, integrated approach to parallel performance analysis that integrates traditional application-oriented performance data with measurements of the physical runtime environment. We have developed the needed infrastructure for combined evaluation of system, application, and machine room performance in the high end environment. We illustrate the(More)
Digital addressing of the electrical signal in spatial light modulators, as it is the case in present liquid crystal on silicon (LCoS) displays, may lead to temporal phase fluctuations in the optical beam. In diffractive optics applications a reduction in the modulation diffraction efficiency may be expected. Experimental work is done characterizing the(More)
Parallel aligned liquid crystal on silicon (PA-LCoS) devices are widely used in many optics and photonics applications to control the amplitude, phase and/or state of polarization (SOP) of light beams. We present a novel model enabling to calculate the voltage dependent retardance provided by PA-LCoS devices for a very wide range of incidence angles and any(More)
Phase diffractive optical elements, which have many interesting applications, are usually fabricated using a photoresist. In this paper, they were made using a hybrid optic-digital system and a photopolymer as recording medium. We analyzed the characteristics of the input and recording light and then simulated the generation of blazed gratings with(More)