Andrés López-Sepulcre

Learn More
Theory suggests evolutionary change can significantly influence and act in tandem with ecological forces via ecological-evolutionary feedbacks. This theory assumes that significant evolutionary change occurs over ecologically relevant timescales and that phenotypes have differential effects on the environment. Here we test the hypothesis that local(More)
Dispersal is often risky to the individual, yet the long-term survival of populations depends on having a sufficient number of individuals that move, find each other, and locate suitable breeding habitats. This tension has consequences that rarely meet our conservation or management goals. This is particularly true in changing environments, which makes the(More)
Ecological and evolutionary processes may interact on the same timescale, but we are just beginning to understand how. Several studies have examined the net effects of adaptive evolution on ecosystem properties. However, we do not know whether these effects are confined to direct interactions or whether they propagate further through indirect ecological(More)
Fluctuating environments are expected to select for individuals that have highest geometric fitness over the experienced environments. This leads to the prediction that genetically determined environmental robustness in fitness, and average fitness across environments should be positively genetically correlated to fitness in fluctuating environments.(More)
1. Life histories evolve as a response to multiple agents of selection, such as age-specific mortality , resource availability or environmental fluctuations. Predators can affect life-history evolution directly, by increasing the mortality of prey, and indirectly, by modifying prey density and resources available to the survivors. Increasing survivor(More)
The carrying capacity of an environment is determined partly by how individuals compete over the available resources. To territorial animals, space is an important resource, leading to conflict over its use. We build a model where the carrying capacity for an organism in a given environment results from the evolution of territorial defense effort and the(More)
Early demographic models of life-history evolution were formulated in a density-independent framework and saw extrinsic sources of mortality, such as predation, as the primary driving force that shaped the evolution of life-history traits. The evidence for density dependence in nature motivated theoreticians to build models that incorporated population(More)
In semelparous populations, dormant germ banks (e.g. seeds) have been proposed as important in maintaining genotypes that are adaptive at different times in fluctuating environments. Such hidden storage of genetic diversity need not be exclusive to dormant banks. Genotype diversity may be preserved in many iteroparous animals through sperm-storage(More)
Evolutionary theory predicts that the sex linkage of sexually selected traits can influence the direction and rate of evolutionary change, and also itself be subject to selection. Theory abounds on how sex-specific selection, mate choice, or other phenomena should favor different types of sex-linked inheritance, yet evidence in nature remains limited. Here,(More)