Learn More
Defective liver gluconeogenesis is the main mechanism leading to fasting hyperglycemia in type 2 diabetes, and, in concert with steatosis, it is the hallmark of hepatic insulin resistance. Experimental obesity results, at least in part, from hypothalamic inflammation, which leads to leptin resistance and defective regulation of energy homeostasis.(More)
The development of obesity and insulin resistance has been extensively studied in the last decades, but the mechanisms underlying these alterations are still not completely understood. The gut microbiota has been identified as a potential contributor to metabolic diseases. It has been shown that obese individuals present different proportions of bacterial(More)
Mutation of tub gene in mice induces obesity, suggesting that tub could be an important regulator of energy balance. In the current study, we investigated whether insulin, leptin, and obesity can modulate Tub in vivo in hypothalamic nuclei, and we investigated possible consequences on energy balance, neuropeptide expression, and hepatic glucose metabolism.(More)
BACKGROUND Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. OBJECTIVE The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of(More)
Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing(More)
Running Title: TLR2 and insulin resistance. ABSTRACT The aims of the present study were to investigate the expression of TLR2 in muscle and white adipose tissue (WAT) of diet-induced obesity (DIO) mice and also the effects of its inhibition, by the use of TLR2 antisense oligonucleotide (ASON) on insulin sensitivity and signaling. Expression of TLR2 was(More)
Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased(More)
The authors and editors retract this publication following an investigation into concerns around the data presented in several figures that were brought to the editors' attention. The text below has been agreed to by the editors, the first author (who was a PhD student at the time of publication), the corresponding author and most of the co-authors. All(More)
On the basis of the recommendation of the American Diabetes Association's Panel on Ethical Scientific Programs (ESP), the American Diabetes Association, the publisher of Diabetes, is issuing this expression of concern to alert readers to questions about the reliability of the data in the above-cited article. After readers of the journal contacted Diabetes(More)
  • 1