André Strittmatter

Learn More
In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment(More)
—Semiconductor laser diodes (LDs) typically use lattice matched epitaxial layers as waveguide cladding materials. We describe a new LD architecture in which the upper cladding layer is replaced with an evaporated or sputtered nonepitaxial material. Designs and results are presented for 415-nm InGaN LDs that use indium tin oxide, silver, or a(More)
We report on enhancing the photon-extraction efficiency (PEE) of deterministic quantum dot (QD) microlenses via anti-reflection (AR) coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta 2 O 5 , and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A(More)
Current injection into single quantum dots embedded in vertical pn-diodes featuring oxide apertures is essential to the technological realization of single-photon sources. This requires efficient electrical pumping of sub-micron sized regions under pulsed excitation to achieve control of the carrier population of the desired quantum dots. We show(More)
  • 1