Learn More
  • A S Pupo
  • 1998
The effects of castration on alpha1-adrenoceptors in rat vas deferens were investigated by determining the actions of selective antagonists against the contractions induced by noradrenaline. The results obtained in vas deferens from control rats suggest participation of alpha1A-adrenoceptors as judged by the pA2 values for prazosin (9.6), benoxathian (9.5),(More)
The multi-functional protein gC1qR has been reported to interact with an arginine-rich motif in the C-tail of hamster alpha1B-adrenoceptors (ARs), controlling their expression and subcellular localization. Since a similar motif is present in alpha1D-, but not alpha1A-ARs, we studied the specificity of this interaction. Human alpha1-ARs, tagged at their(More)
We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and(More)
The role of the N-terminus of human alpha(1D)-adrenoceptors was examined by deleting the first 79 amino acids (Delta(1-79)) and epitope-tagging to facilitate immunoprecipitation and detection. Following transfection into HEK293 cells, 6- to 13-fold increases in the density of specific [125I]BE 2254 binding sites were observed for both tagged and untagged(More)
The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3-fold more sensitive to methoxamine and phenylephrine (n = 6-12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA).(More)
1. The actions of the alpha1-adrenoceptor antagonist indoramin have been examined against the contractions induced by noradrenaline in the rat vas deferens and aorta taking into account a putative neuronal uptake blocking activity of this antagonist which could result in self-cancelling actions. 2. Indoramin behaved as a simple competitive antagonist of the(More)
Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well(More)
Norepinephrine and epinephrine are involved in the control of several important functions of the central nervous system (CNS), including sleep, arousal, mood, appetite, and autonomic outflow. Catecholamines control these functions through activation of a family of adrenergic receptors (ARs). The ARs are divided into three subfamilies (alpha1, alpha2, and(More)
BACKGROUND The C-terminal four amino acids (GEEV) of human alpha1A-adrenergic receptors (ARs) have been reported to interact with the PDZ domain of neuronal nitric oxide synthase (nNOS) in a yeast two-hybrid system. The other two alpha1-AR subtypes have no sequence homology in this region, raising the possibility of subtype-specific protein-protein(More)
G protein-coupled receptors (GPCRs) are the most important targets for drug discovery and not surprisingly ∼40% of all drugs currently in the market act on these receptors. Currently, one of the most active areas in GPCRs signaling is biased agonism, a phenomenon that occurs when a given ligand is able to preferentially activate one (or some) of the(More)