Learn More
Comments "This book offers a truly unique approach to hybrid systems verification with logic and theorem proving." Author The author is an assistant professor in the Computer Science Department at Car-negie Mellon University. He has an M.Sc. in computer science from the University of Karlsruhe, Germany and a Ph.D. in computer science from the University of(More)
We address the problem of model checking stochastic systems, i.e.~checking whether a stochastic system satisfies a certain temporal property with a probability greater (or smaller) than a fixed threshold. In particular, we present a novel Statistical Model Checking (SMC) approach based on Bayesian statistics. We show that our approach is feasible for hybrid(More)
—Statistical Model Checking (SMC) is a computation-ally very efficient verification technique based on selective system sampling. One well identified shortcoming of SMC is that, unlike probabilistic model checking, it cannot be applied to systems featuring nondeterminism, such as Markov Decision Processes (MDP). We address this limitation by developing an(More)
We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose right-hand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our(More)
KeYmaera is a hybrid verification tool for hybrid systems that combines deductive, real algebraic, and computer algebraic prover technologies. It is an automated and interactive theorem prover for a natural specification and verification logic for hybrid systems. KeYmaera supports differential dynamic logic, which is a real-valued first-order dynamic logic(More)
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution or government. For proofs and interactive car system simulations, see Abstract Car safety measures can be most effective when the cars on a street(More)
—Nowadays, robots interact more frequently with a dynamic environment outside limited manufacturing sites and in close proximity with humans. Thus, safety of motion and obstacle avoidance are vital safety features of such robots. We formally study two safety properties of avoiding both stationary and moving obstacles: (i) passive safety, which ensures that(More)
Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a(More)
Recently, there has been considerable interest in the use of Model Checking for Systems Biology. Unfortunately, the state space of stochastic biological models is often too large for classical Model Checking techniques. For these models, a statistical approach to Model Checking has been shown to be an effective alternative. Extending our earlier work, we(More)
We generalize dynamic logic to a logic for differential-algebraic (DA) programs, i.e. discrete programs augmented with first-order differential-algebraic formulas as continuous evolution constraints in addition to first-order discrete jump formulas. These programs characterize interacting discrete and continuous dynamics of hybrid systems elegantly and(More)