André M. Strydom

  • Citations Per Year
Learn More
We report an investigation into the magnetic and electronic properties of partially hydrogenated vertically aligned few layers graphene (FLG) synthesized by microwave plasma enhanced chemical vapor deposition. The FLG samples are hydrogenated at different substrate temperatures to alter the degree of hydrogenation and their depth profile. The unique(More)
Carbon nanotubes (CNTs) have been proposed and are actively being explored as innovative multipurpose carriers for biomolecules and diagnostic applications. Their versatile physico-chemical features enable them as a carrier of several pharmaceutically relevant entities and allow them for rational design of novel nanoscale candidates for drug development.(More)
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that(More)
The intermetallic compound PrFe2Al8 that possesses a three-dimensional network structure of Al polyhedra centered at the transition metal element Fe and the rare earth Pr is investigated through neutron powder diffraction and inelastic neutron scattering in order to elucidate the magnetic ground state of Pr and Fe and the crystal field effects of Pr. Our(More)
We present magnetization, specific heat, and (27)Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of(More)
In this study we report the physical properties of the new ternary compound Ce2Rh3Ge that crystallizes in the rhombohedral, triple hexagonal MgCu2-type of structure. The electronic ground state properties of Ce2Rh3Ge were characterized by magnetic susceptibility, specific heat, electrical resistivity and thermal transport measurements. The results indicate(More)
Measurements of electrical resistivity (ρ(T)), magnetoresistivity (MR), magnetic susceptibility (χ(T)) and heat capacity (C(P)(T)) are presented for the (Ce(1-x)La(x))PtIn alloy system of which the CePtIn parent is a known dense Kondo compound that does not order magnetically down to 50 mK. χ(T) for alloys 0≤x≤0.8 exhibits Curie-Weiss behaviour. ρ(T)(More)
The critical behaviour of Mn0.94Nb0.06CoGe alloy around the paramagnetic-ferromagnetic phase transition was studied based on the field dependence on magnetic entropy change. By using the obtained exponents, the modified Arrott plot is consistent with that by using conventional method. These critical exponents are confirmed by the Widom scaling relation.(More)
We report the magnetic and transport properties of a new ternary intermetallic compound, CeRhSn₃, using magnetic susceptibility, magnetization, specific heat, electrical resistivity, muon-spin relaxation (μSR) and neutron diffraction investigations. The dc magnetic susceptibility data reveal two magnetic phase transitions at 0.9 and 4 K. The overall(More)
Magnetic and dielectric properties of the double perovskite Ho2NiMnO6 are reported. The compound is synthesized by nitrate route and is found to crystallize in monoclinic P21/n space group. Lattice parameters obtained by refining powder x-ray diffraction data are; a  =  5.218(2) Å, b  =  5.543(2) Å, c  =  7.480(3) Å and the monoclinic angle is [Formula: see(More)