André Elisseeff

Learn More
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. These areas include text processing of internet documents, gene expression array analysis, and combinatorial chemistry. The objective of variable selection is three-fold: improving(More)
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We(More)
We introduce the notion of kernel-alignment, a measure of similarity between two kernel functions or between a kernel and a target function. This quantity captures the degree of agreement between a kernel and a given learning task, and has very natural interpretations in machine learning, leading also to simple algorithms for model selection and learning.(More)
We explore the use of the so-called zero-norm of the parameters of linear models in learning. Minimization of such a quantity has many uses in a machine learning context: for variable or feature selection, minimizing training error and ensuring sparsity in solutions. We derive a simple but practical method for achieving these goals and discuss its(More)
We present a method for visually and quantitatively assessing the presence of structure in clustered data. The method exploits measurements of the stability of clustering solutions obtained by perturbing the data set. Stability is characterized by the distribution of pairwise similarities between clusterings obtained from sub samples of the data. High(More)
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding(More)
This report presents a SVM like learning system to handle multi-label problems. Such problems arise naturally in bio-informatics. Consider for instance the MIPS Yeast genome database in [12], it is formed by around 3,300 genes associated to their functional classes. One gene can have many classes, and different genes do not belong to the same number of(More)
MOTIVATION Building an accurate protein classification system depends critically upon choosing a good representation of the input sequences of amino acids. Recent work using string kernels for protein data has achieved state-of-the-art classification performance. However, such representations are based only on labeled data--examples with known 3D(More)