Learn More
Endocardial cells play a critical role in cardiac development and function, forming the innermost layer of the early (tubular) heart, separated from the myocardium by extracellular matrix (ECM). However, knowledge is limited regarding the interactions of cardiac progenitors and surrounding ECM during dramatic tissue rearrangements and concomitant cellular(More)
Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity(More)
The use of somatic mutations for predicting clinical outcome is difficult because a mutation can indirectly influence the function of many genes, and also because clinical follow-up is sparse in the relatively young next generation sequencing (NGS) databanks. Here we approach this problem by linking sequence databanks to well annotated gene-chip datasets,(More)
Neuronal pathology in the cerebral cortex (CC) of fetal hydrocephalus brains is quite subtle when applying routine Nissl staining. This study is aimed at investigating alterations of interneurons which can be immunolabelled by antibodies against the calcium-binding proteins calretinin (CR), calbindin (CB) and parvalbumin (PV). The subplate (SP) subjacent to(More)
Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy(More)
Vascular and nonvascular cells often form an interconnected network in vitro, similar to the early vascular bed of warm-blooded embryos. Our time-lapse recordings show that the network forms by extending sprouts, i.e., multicellular linear segments. To explain the emergence of such structures, we propose a simple model of preferential attraction to(More)
Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential(More)
Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM(More)
Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of(More)