Learn More
To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is “open set” recognition, where incomplete knowledge of the(More)
For decades, photographs have been used to document space-time events and they have often served as evidence in courts. Although photographers are able to create composites of analog pictures, this process is very time consuming and requires expert knowledge. Today, however, powerful digital image editing software makes image modifications straightforward.(More)
Contemporary Vision and Pattern Recognition problems such as face recognition, fingerprinting identification, image categoriza-tion, and DNA sequencing often have an arbitrarily large number of classes and properties to consider. To deal with such complex problems using just one feature descriptor is a difficult task and feature fusion may become mandatory.(More)
Recognition problems in computer vision often benefit from a fusion of different algorithms and/or sensors, with score level fusion being among the most widely used fusion approaches. Choosing an appropriate score normalization technique before fusion is a fundamentally difficult problem because of the disparate nature of the underlying distributions of(More)
In this paper, we present an algorithm to detect the presence of diabetic retinopathy (DR)-related lesions from fundus images based on a common analytical approach that is capable of identifying both red and bright lesions without requiring specific pre- or postprocessing. Our solution constructs a visual word dictionary representing points of interest(More)
As a crucial security problem, anti-spoofing in biomet-rics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive in form of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge(More)
Despite important recent advances, the vulnerability of biometric systems to spoofing attacks is still an open problem. Spoof attacks occur when impostor users present synthetic biometric samples of a valid user to the biometric system seeking to deceive it. Considering the case of face biometrics, a spoofing attack consists in presenting a fake sample(More)
With a huge amount of printed documents nowadays, identifying their source is useful for criminal investigations and also to authenticate digital copies of a document. In this paper, we propose novel techniques for laser printer attribution. Our solutions do not need very high resolution scanning of the investigated document and explore the(More)