Learn More
The extent to which large duplications and deletions contribute to human genetic variation and diversity is unknown. Here, we show that large-scale copy number polymorphisms (CNPs) (about 100 kilobases and greater) contribute substantially to genomic variation between normal humans. Representational oligonucleotide microarray analysis of 20 individuals(More)
We present an allele-specific copy number analysis of the in vivo breast cancer genome. We describe a unique bioinformatics approach, ASCAT (allele-specific copy number analysis of tumors), to accurately dissect the allele-specific copy number of solid tumors, simultaneously estimating and adjusting for both tumor ploidy and nonaberrant cell admixture. This(More)
Kinetic analysis of cellular response to serum deprivation or inhibition of protein synthesis was performed on Swiss 3T3 cells. Time-lapse cinematographic analysis of individual cells transiently exposed to serum-free medium (with or without the addition of purified growth factors) or cycloheximide enabled a detailed mapping of the magnitude and variability(More)
Comparative genomic hybridization serves as a screening test for regions of copy number changes in tumor genomes. We have applied the technique to map DNA gains and losses in 33 cases of formalin-fixed, paraffin-embedded primary breast tumors (13 fibroadenomas and 10 diploid and 10 aneuploid carcinomas). No genomic imbalances were found in fibroadenomas.(More)
The restriction point (R) is defined as the point in G(1) after which cells can complete a division cycle without growth factors and divides G(1) into two physiologically different intervals in cycling cells, G(1)-pm (a postmitotic interval with a constant length of 3 to 4 h) and G(1)-ps (a pre-DNA-synthetic interval with a variable length of 1 to 10 h).(More)
The restriction point (R) separates two functionally different parts of G1 in continuously cycling cells. G1-pm represents the postmitotic interval of G1 that lasts from mitosis to R. G1-ps represents the pre S phase interval of G1 that lasts from R to S. G1-pm is remarkably constant in length (its duration is about three hours) in the different cell types(More)
Representational Oligonucleotide Microarray Analysis (ROMA) detects genomic amplifications and deletions with boundaries defined at a resolution of approximately 50 kb. We have used this technique to examine 243 breast tumors from two separate studies for which detailed clinical data were available. The very high resolution of this technology has enabled us(More)
Activation of telomerase is a crucial step during cellular immortalization and malignant transformation of human cells and requires the induction of the catalytic component, human telomerase reverse transcriptase (hTERT), encoded by the hTERT gene. It is poorly understood how the hTERT gene is activated in human cancer cells. In the present study, we(More)
Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of(More)
Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the(More)