Learn More
The dynamics of the brittle fracture process and the occurrence of instabilities during brittle fracture have attracted considerable attention in recent years. Several very accurate experimental investigations (e.g. 1, 2]) on amorphous materials like PMMA and glass and multiple theoretical considerations (e.g. 3, 4]) have addressed the onset of the(More)
High-energy X-ray diffraction has recently been shown to be a viable technique to measure volume-averaged lattice strains in the bulk of metallic polycrystals at increased speed compared to neutron diffraction. The established procedure is to irradiate the sample under investigation with monochromatic X-rays ($100 keV) and to record complete diffraction(More)
Mechanical behavior of multi-phase composites is crucially influenced by volume fractions, orientation distributions and geometries of microconstituents. In the case of carbon–carbon composites manufactured by chemical vapor infiltration, the microconstituents are carbon fibers, pyrolytic carbon matrix, and pores. The local variable thickness of the(More)
This paper investigates the application of sharpening knives using a force controlled industrial robot, for an arbitrary knife shape and orientation. The problem is divided into different parts: calibration of the knife by identifying its unknown orientation, identification of the knife blade contour and estimation of its position in the robot frame through(More)
An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin(2)ψ x-ray analysis method. For the in situ experiments a(More)
  • 1