Learn More
BACKGROUND Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless(More)
Experimental protein-protein interaction (PPI) networks are increasingly being exploited in diverse ways for biological discovery. Accordingly, it is vital to discern their underlying natures by identifying and classifying the various types of deterministic (specific) and probabilistic (nonspecific) interactions detected. To this end, we have analyzed PPI(More)
Identification of canonical pathways through enrichment of differentially expressed genes in a given pathway is a widely used method for interpreting gene lists generated from high-throughput experimental studies. However, most algorithms treat pathways as sets of genes, disregarding any inter- and intra-pathway connectivity information, and do not provide(More)
Protein domain prediction is often the preliminary step in both experimental and computational protein research. Here we present a new method to predict the domain boundaries of a multidomain protein from its amino acid sequence using a fuzzy mean operator. Using the nr-sequence database together with a reference protein set (RPS) containing known domain(More)
An unsupervised self-organizing map-based clustering strategy has been developed to classify tissue samples from an oligonucleotide microarray patient database. Our method is based on the likelihood that a test data vector may have a gene expression fingerprint that is shared by more than one tumor class and as such can identify datasets that cannot be(More)
BACKGROUND Molecular-docking-based virtual screening is an important tool in drug discovery that is used to significantly reduce the number of possible chemical compounds to be investigated. In addition to the selection of a sound docking strategy with appropriate scoring functions, another technical challenge is to in silico screen millions of compounds in(More)
As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial(More)
Large-scale protein interaction networks (PINs) have typically been discerned using affinity purification followed by mass spectrometry (AP/MS) and yeast two-hybrid (Y2H) techniques. It is generally recognized that Y2H screens detect direct binary interactions while the AP/MS method captures co-complex associations; however, the latter technique is known to(More)
BACKGROUND During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these(More)
The ability to adapt to different conditions is key for Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), to successfully infect human hosts. Adaptations allow the organism to evade the host immune responses during acute infections and persist for an extended period of time during the latent infectious stage. In latently infected(More)