Anders Peter S. Adamsen

Learn More
Rates of methane consumption were measured in subarctic coniferous and temperate mixed-hardwood forest soils, using static chambers and intact soil cores. Rates at both sites were generally between 1 and 3 mg of CH(4) m day and decreased with increasing soil water contents above 20%. Addition of ammonium (1 mumol g of soil) strongly inhibited methane(More)
Methane oxidation in soil cores from a mixed hardwood-coniferous forest varied relatively little as a function of incubation temperatures from -1 to 30 degrees C. The increase in oxidation rate was proportional to T (in kelvins). This relationship was consistent with limitation of methane transport through a soil gas phase to a subsurface zone of(More)
Emission of odorous compounds from intensive livestock production is a cause of nuisance in populated rural areas. Knowledge on the chemical composition of odor and temporal variations in emissions are needed in order to identify factors of importance for emission rates and select proper abatement technologies. In this work, a method based on(More)
Application of an extruder to increase the methane yield in a biogas production was examined, and large potential was proved. An extruder was tested on five agricultural biomass types, represented by 13 samples. The samples were analyzed for temperature, maximum particle size, biogas potential, and energy consumption. The extruder treatment increased(More)
Livestock production is a growing source of air pollution, locally and to the wider environment. Improved livestock manure management has the potential to reduce environmental impacts, but there is a need for methodologies to precisely quantify emissions. This paper describes and evaluates a novel storage facility for livestock slurry consisting of eight(More)
The present work was performed to investigate the use of odorant measurements for prediction of odor concentration in facilities with growing-finishing pigs and to analyze the odorant composition in facilities with different floor and ventilation systems. Air was sampled in Nalophan bags, odor concentrations were measured by dilution-to-threshold(More)
Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and(More)
Four methods of monitoring the anaerobic digestion process were studied at pilot scale. The methods employed were Micro Gas Chromatography (μ-GC) and Membrane Inlet Mass Spectrometry (MIMS) for measurements in the gas phase, Near Infrared Spectroscopy (NIRS) and pH in the liquid phase. Micro Gas Chromatography accurately measured H(2), CH(4), H(2)S, N(2)(More)
Odor from pig production facilities is typically measured with olfactometry, whereby odor samples are collected in sampling bags and assessed by human panelists within 30 h. In the present study, the storage stability of odorants in two types of sampling bags that are often used for olfactometry was investigated. The bags were made of Tedlar or Nalophan. In(More)
Identification of different factors that affect emissions of gasses, including volatile organic compounds (VOCs) is necessary to develop emission abatement technology. The objectives of this research were to quantify and study temporal variation of gas emissions from a model pig house under varying ventilation rates. The used model was a 1:12.5 scale of a(More)