Learn More
Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (delta(15)N), foliar N concentrations, mycorrhizal type and climate for over 11,000 plants worldwide. Arbuscular mycorrhizal,(More)
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and(More)
• C. The Northern Hemisphere permafrost region contains approximately 1,700 Pg of organic C of which about 90% occurs in permafrost deposits 1. This C pool represents about 50% of the estimated global below-ground organic C pool 1. With the large amplitude of predicted Arctic climate change, this C pool has been used to imply a critical potential for global(More)
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major(More)
Climate change may alter the terrestrial ecosystem carbon balance in the Arctic, and previous studies have emphasized the importance of cold season gas exchange when considering the annual carbon balance. Here, we examined gross ecosystem production (GEP), ecosystem respiration (R eco) and net ecosystem exchange (NEE) during autumn at a high arctic dry open(More)
Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients(More)
The accuracy of the acoustic reflections method for the evaluation of human nasal airway geometry is determined by the physical limitations of the technique and also by the in vivo deviations from the assumptions of the technique. The present study 1) examines the sound loss caused by nonrigidity of the nasal mucosa and viscous loss caused by complex(More)
Climate warming will induce changes in Arctic ecosystem carbon balance, but besides climate, nitrogen availability is a critical controlling factor of carbon cycling. It is therefore essential to obtain knowledge on the influence of a changing climate on nitrogen fixation, as this process is the main source of new nitrogen to arctic ecosystems. In order to(More)
The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The(More)
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients(More)