Anders Hagfeldt

Learn More
Department of Physical and Analytical Chemistry, Uppsala University, Box 259, SE-751 05 Uppsala, Sweden, Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT),(More)
Three classes (carbides, nitrides and oxides) of nanoscaled early-transition-metal catalysts have been proposed to replace the expensive Pt catalyst as counter electrodes (CEs) in dye-sensitized solar cells (DSCs). Of these catalysts, Cr(3)C(2), CrN, VC(N), VN, TiC, TiC(N), TiN, and V(2)O(3) all showed excellent catalytic activity for the reduction of(More)
[*] Prof. A. Hagfeldt, Prof. L. Sun, L. Li, P. Qin, Dr. M. Gorlov Center of Molecular Devices School of Chemical Science and Engineering Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden) E-mail: lichengs@kth.se Prof. A. Hagfeldt, Dr. E. A. Gibson, Dr. G. Boschloo Department of Physical and Analytical Chemistry Uppsala University, Box 259, 75105(More)
In tandem: Employing a molecular dyad and a cobalt-based electrolyte gives a threefold-increase in open-circuit voltage (V(OC)) for a p-type NiO device (V(OC) = 0.35 V), and a fourfold better energy conversion efficiency. Incorporating these improvements in a TiO(2)/NiO tandem dye-sensitized solar cell (TDSC), results in a TDSC with a V(OC) = 0.91 V (see(More)
Various characteristics of dye-sensitized nanostructured TiO2 solar cells, such as electron transport and electron lifetime, were studied in detail using monochromatic illumination conditions. The electron transport was found to be a thermally activated process with activation energies in the range of 0.10-0.15 eV for light intensities that varied 2 orders(More)
All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a "cation cascade" to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average(More)
A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and(More)
We report on perovskite (CH3NH3)PbI3-sensitized solid-state solar cells using spiro-OMeTAD, poly(3-hexylthiophene-2,5-diyl) (P3HT) and 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH) as hole transport materials (HTMs) with a light to electricity power conversion efficiency of 8.5%, 4.5%, and 1.6%, respectively, under AM 1.5G illumination of 1000 W/m(2)(More)
Perovskite solar cells are one of the most promising photovoltaic technologies with their extraordinary progress in efficiency and the simple processes required to produce them. However, the frequent presence of a pronounced hysteresis in the current voltage characteristic of these devices arises concerns on the intrinsic stability of organo-metal halides,(More)