Learn More
We present bijections between four classes of combinatorial objects. Two of them, the class of unlabeled (2 + 2)-free posets and a certain class of involutions (or chord diagrams), already appeared in the literature, but were apparently not known to be equinumerous. We present a direct bijection between them. The third class is a family of permutations(More)
We call a Stieltjes continued fraction with monic monomial numerators a Catalan continued fraction. Let e k (π) be the number of increasing subsequences of length k + 1 in the permutation π. We prove that any Cata-lan continued fraction is the multivariate generating function of a family of statistics on the 132-avoiding permutations, each consisting of a(More)
Recently, Babson and Steingrímsson have introduced gen-eralised permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We consider pattern avoidance for such patterns, and give a complete solution for the number of permutations avoiding any single pattern of length three with exactly one(More)
Any permutation statistic f : S → C may be represented uniquely as a, possibly infinite, linear combination of (classical) permutation patterns: f = Σ τ λ f (τ)τ. To provide explicit expansions for certain statistics, we introduce a new type of permutation patterns that we call mesh patterns. Intuitively, an occurrence of the mesh pattern p = (π, R) is an(More)
It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs of this fact. It turns out that some of the published bijections can easily be obtained from others. In this paper we describe all bijections(More)
We present bijections between four classes of combinatorial objects. Two of them, the class of unlabeled (2 + 2)-free posets and a certain class of chord diagrams (or involutions), already appear in the literature. The third one is a class of permutations, defined in terms of a new type of pattern. An attractive property of these patterns is that, like(More)
Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2,. .. , n} with d descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Résumé. Motivés par les "(More)
In [1] Babson and Steingrímsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Claesson [2] presented a complete solution for the number of permutations avoiding any single (generalized) pattern of the form x yz or xy z with xyz ∈ S 3. For eight of these(More)