Learn More
K+ channel principal subunits are by far the largest and most diverse of the ion channels. This diversity originates partly from the large number of genes coding for K+ channel principal subunits, but also from other processes such as alternative splicing, generating multiple mRNA transcripts from a single gene, heteromeric assembly of different principal(More)
Four mammalian Kv3 genes have been identified, each of which generates, by alternative splicing, multiple protein products differing in their C-terminal sequence. Products of the Kv3.1 and Kv3.2 genes express similar delayed-rectifier type currents in heterologous expression systems, while Kv3.3 and Kv3.4 proteins express A-type currents. All Kv3 currents(More)
Histamine-containing neurons of the tuberomammilary nucleus project to the hippocampal formation to innervate H1 and H2 receptors on both principal and inhibitory interneurons. Here we show that H2 receptor activation negatively modulates outward currents through Kv3.2-containing potassium channels by a mechanism involving PKA phosphorylation in inhibitory(More)
Frequenin, a Ca(2+)-binding protein, has previously been implicated in the regulation of neurotransmission, possibly by affecting ion channel function. Here, we provide direct evidence that frequenin is a potent and specific modulator of Kv4 channels, the principal molecular components of subthreshold activating A-type K(+) currents. Frequenin increases(More)
Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells(More)
The activation of T-lymphocytes is dependent upon, and accompanied by, an increase in voltage-gated K+ conductance. Kv1.3, a Shaker family K+ channel protein, appears to play an essential role in the activation of peripheral human T cells. Although Kv1.3-mediated K+ currents increase markedly during the activation process in mice, and to a lesser degree in(More)
  • 1