Anatoly I Burshtein

Learn More
The fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is known to be very sensitive to a magnetic field, assisting the spin conversion in the resulting geminate radical ion pair (RIP), (1, 3)[D(+)...A(-)]. The relative increase of the fluorescence in the(More)
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates(More)
The recombination dynamics of ion pairs generated upon electron transfer quenching of perylene in the first singlet excited state by tetracyanoethylene in acetonitrile is quantitatively described by the extended unified theory of photoionization/recombination. The extension incorporates the hot recombination of the ion pair passing through the(More)
The results of the precise kinetic fitting of the highly exergonic electron transfer from excited perylene to tetracyanoethylene in acetonitrile were used to estimate the Stern-Volmer constant of perylene quenching by double channel electron transfer (to the ground and excited states of the radical ion pair). It appears that the Stern-Volmer constant is(More)
Two competing theories are used for bridging the gap between the nonadiabatic and the deeply adiabatic electron transfer between symmetric parabolic wells. For the high friction limit, a simple analytic interpolation is proposed as a reasonable alternative to them, well-fitted to the results of numerical simulations. It provides a continuous description of(More)
The kinetics of recombination/dissociation of photogenerated radical pairs (RPs) is described with a generalized model (GM), which combines exponential models (EMs) and contact models (CMs) of cage effect dynamics. The main assumption of EM is the irreversible dissociation of RP as a first-order reaction. CM takes into account repetitive contacts of(More)
The quantum yields of triplets and free radicals (or radical ions) that escaped recombination in photochemically created primary radical pairs (or radical ion pairs) are calculated. As the products of monomolecular photodissociation, the neutral radicals appear at contact, while the ions are initially distributed over the space due to distant(More)
The reversible exciplex formation followed by its decomposition into an ion pair is considered, taking into account the subsequent geminate and bulk ion recombination to the triplet and singlet products (in excited and ground states). The integral kinetic equations are derived for all state populations, assuming that the spin conversion is performed by the(More)
The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace(More)
The natural extension and reformulation of the unified theory (UT) proposed here makes it integro-differential and capable of describing the distant quenching of excitation by electron transfer, accompanied with contact but reversible exciplex formation. The numerical solution of the new UT equations allows specifying the kinetics of the fluorescence(More)