Anatolij A. Melnikov

Learn More
Two recombinant lambda DNAs, lambda gt::pMB9 and lambda NM::pBR322, containing, respectively, the pMB9 and pBR322 replicon were constructed and characterized. Both constructs (phagemid DNAs) transfect Escherichia coli cells, producing mature infectious phage progenies. Alternatively, drug-resistant colonies of transductants can be selected upon infection(More)
The DNA topoisomerase found in rat brain neurons relaxes supercoiled DNA in the absence of ATP or Mg2+. The estimated content of the active enzyme per nucleus of nerve cell is constant during development from a fetal proliferating neuroblast at the embryonic stage of 18 days to the terminally differentiated neuron (postnatal age of 60 days). The salt(More)
A genetic procedure for selection of specific λ clones, by homologous recombination between λ clones from a gene clonotheque and sequences cloned into a plasmid, was developed. Resulting clones are isolated in transduction experiments by plating infected Escherichia coli cells under conditions selecting for the antibiotic resistance marker carried by the(More)
Burkholderia cepacia is an emerging opportunistic pathogen that causes fatal infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Various environmental isolates of B. cepacia are, however, capable of degrading environmental pollutants, such as trichloroethylene, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), etc., and(More)
The DNA topoisomerase I has been isolated from neurons of rat cerebral cortex. The most homogeneous fraction purified contains only one polypeptide of Mr approx. 100 000. The enzyme relaxes supercoiled DNA in the absence of ATP or Mg2+. The optimum monovalent cation concentration for the relaxation of superhelical DNA under conditions of DNA excess is found(More)
The mobile element jockey is similar in structural organization and coding potential to the LINEs of various organisms. It is transcribed at different stages of Drosophila ontogenesis. The Drosophila LINE family includes active transposable elements. Current models for the mechanism of transposition involve reverse transcription of an RNA intermediate and(More)
  • 1