Anatoli B. Meriin

Learn More
In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that(More)
The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones(More)
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or(More)
Harmful conditions including heat shock, oxidative stress, UV, and so forth cause programmed cell death, whose triggering requires activation of the Jun N-terminal kinase, JNK. High levels of Hsp72, a heat-inducible member of Hsp70 family, protect cells against a variety of stresses by a mechanism that is unclear at present. Here we report that elevated(More)
Abnormal polypeptides that escape proteasome-dependent degradation and aggregate in cytosol can be transported via microtubules to an aggresome, a recently discovered organelle where aggregated proteins are stored or degraded by autophagy. We used synphilin 1, a protein implicated in Parkinson disease, as a model to study mechanisms of aggresome formation.(More)
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45 degrees C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase(More)
he cause of Huntington’s disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones(More)
Many major neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington Disease and other polyglutamine expansion disorders, are associated with degeneration and death of specific neuronal populations due to accumulation of certain abnormal polypeptides. These misfolded species aggregate and form(More)
Inhibition of the major cytosolic protease, proteasome, has been reported to induce programmed cell death in several cell lines, while with other lines, similar inhibition blocked apoptosis triggered by a variety of harmful treatments. To elucidate the mechanism of pro- and antiapoptotic action of proteasome inhibitors, their effects on U937 lymphoid and(More)
The common feature of many neurodegenerative diseases is emergence of protein aggregates. Identifying their composition can provide valuable insights into the cellular mechanisms of protein aggregation and neuronal death. No reliable method for identification of the aggregate-associated proteins has been available. Here we describe a method for(More)