Learn More
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45 degrees C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase(More)
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or(More)
The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones(More)
Abnormal proteins, which escape chaperone-mediated refolding or proteasome-dependent degradation, aggregate and form inclusion bodies (IBs). In several neurodegenerative diseases, such IBs can be formed by proteins with expanded polyglutamine (polyQ) domains (e.g., huntingtin). This work studies the regulation of intracellular IB formation using an(More)
Polyglutamine (polyQ) disorders, including Huntington's disease (HD), are caused by expansion of polyQ-encoding repeats within otherwise unrelated gene products. In polyQ diseases, the pathology and death of affected neurons are associated with the accumulation of mutant proteins in insoluble aggregates. Several studies implicate polyQ-dependent aggregation(More)
The role of aggregation of abnormal proteins in cellular toxicity is of general importance for understanding many neurological disorders. Here, using a yeast model, we demonstrate that mutations in many proteins involved in endocytosis and actin function dramatically enhance the toxic effect of polypeptides with an expanded polyglutamine (polyQ) domain.(More)
Aggresome formation is initiated upon proteasome failure, and facilitates autophagic clearance of protein aggregates to protect cells from proteotoxicity. Here we demonstrate that proteasome inhibition generates a signaling event to trigger aggresome formation. In aggresome signaling, the cell senses a build-up of aberrant newly synthesized proteins. The(More)
The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to(More)
The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates.(More)
  • 1