Learn More
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of(More)
Human T lymphotropic virus type 1 (HTLV-1) appears to persist in the chronic phase of infection by driving oligoclonal proliferation of infected T cells. Our recent high-throughput sequencing study revealed a large number (often > 10(4)) of distinct proviral integration sites of HTLV-1 in each host that is greatly in excess of previous estimates. Here we(More)
Human T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown. We devised a high-throughput protocol to map the genomic(More)
The regulation of proviral latency is a central problem in retrovirology. We postulate that the genomic integration site of human T lymphotropic virus type 1 (HTLV-1) determines the pattern of expression of the provirus, which in turn determines the abundance and pathogenic potential of infected T cell clones in vivo. We recently developed a high-throughput(More)
MOTIVATION The relative abundance of retroviral insertions in a host genome is important in understanding the persistence and pathogenesis of both natural retroviral infections and retroviral gene therapy vectors. It could be estimated from a sample of cells if only the host genomic sites of retroviral insertions could be directly counted. When host genomic(More)
HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers(More)
Estimation of immunological and microbiological diversity is vital to our understanding of infection and the immune response. For instance, what is the diversity of the T cell repertoire? These questions are partially addressed by high-throughput sequencing techniques that enable identification of immunological and microbiological "species" in a sample.(More)
Adult T-cell leukemia/lymphoma (ATL) occurs in ∼5% of human T-lymphotropic virus type 1 (HTLV-1)-infected individuals and is conventionally thought to be a monoclonal disease in which a single HTLV-1(+) T-cell clone progressively outcompetes others and undergoes malignant transformation. Here, using a sensitive high-throughput method, we quantified(More)
Human T lymphotropic virus type 1 (HTLV-1) causes a range of chronic inflammatory diseases and an aggressive malignancy of T lymphocytes known as adult T-cell leukaemia/lymphoma (ATLL). A cardinal feature of HTLV-1 infection is the presence of expanded clones of HTLV-1-infected T cells, which may persist for decades. A high viral burden (proviral load) is(More)
Human T-lymphotropic virus type 1 (HTLV-1) infects an estimated 10 million persons globally with transmission resulting in lifelong infection. Disease, linked to high proviral load, occurs in a minority. In established infection HTLV-1 replicates through infectious spread and clonal expansion of infected lymphocytes. Little is known about acute HTLV-1(More)