Learn More
The transcriptional co-activator PGC-1alpha regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1alpha (NT-PGC-1alpha) produced by alternative 3' splicing that introduces an in-frame stop codon into PGC-1alpha mRNA. The expressed(More)
Mitochondria play central roles in energy homeostasis, metabolism, signaling, and apoptosis. Accordingly, the abundance, morphology, and functional properties of mitochondria are finely tuned to meet cell-specific energetic, metabolic, and signaling demands. This tuning is largely achieved at the level of transcriptional regulation. A highly interconnected(More)
Skeletal muscle mitochondrial dysfunction is believed to play a role in the progression and severity of amyotrophic lateral sclerosis (ALS). The regulation of transcriptional co-activators involved in mitochondrial biogenesis and function in ALS is not well known. When compared with healthy control subjects, patients with ALS, but not neurogenic disease(More)
Drug resistance of pathogens is an increasing problem whose underlying mechanisms are not fully understood. Cellular uptake of the major drugs against Trypanosoma brucei spp., the causative agents of sleeping sickness, is thought to occur through an unusual, so far unidentified adenosine transporter. Saccharomyces cerevisiae was used in a functional screen(More)
Estrogen-related receptor alpha (ERRalpha) is one of the first orphan nuclear receptors to be identified, yet its physiological functions are still unclear. We show here that ERRalpha is an effector of the transcriptional coactivator PGC-1alpha [peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha], and that it regulates the(More)
The estrogen-related receptor alpha (ERRalpha) is one of the first orphan nuclear receptors identified. Still, we know little about the mechanisms that regulate its expression and its activity. In this study, we show that the transcriptional coactivator PGC-1, which is implicated in the control of energy metabolism, regulates ERRalpha at two levels. First,(More)
PGC-1 was originally identified as a transcriptional coactivator of the nuclear receptor PPARgamma. The expression pattern and induction by exposure to cold have implicated PGC-1 in the regulation of energy metabolism and adaptive thermogenesis. Remarkably, PGC-1 overexpression can induce mitochondrial biogenesis and functions. Recent studies show that(More)
Steroid hormones bind and activate intracellular receptors that are ligand-regulated transcription factors. Mammalian steroid receptors can confer hormone-dependent transcriptional enhancement when expressed in yeast, thereby enabling the genetic identification of nonreceptor proteins that function in the hormone signal transduction pathway. Pdr5p(More)
Steroid receptors mediate responses to lipophilic hormones in a tissue- and ligand-specific manner. To identify nonreceptor proteins that confer specificity or regulate steroid signaling, we screened a human cDNA library in a steroid-responsive yeast strain. One of the identified cDNAs, isolated in the screen as ligand effect modulator 6, showed no homology(More)
Mechanisms and signals that regulate transcriptional coactivators are still largely unknown. Here we provide genetic evidence for a repressor that interacts with and regulates the nuclear receptor coactivator PGC-1. Association with the repressor requires a PGC-1 protein interface that is similar to the one used by nuclear receptors. Removal of the(More)