Anastasia Kralli

Learn More
Mitochondria play central roles in energy homeostasis, metabolism, signaling, and apoptosis. Accordingly, the abundance, morphology, and functional properties of mitochondria are finely tuned to meet cell-specific energetic, metabolic, and signaling demands. This tuning is largely achieved at the level of transcriptional regulation. A highly interconnected(More)
Mechanisms and signals that regulate transcriptional coactivators are still largely unknown. Here we provide genetic evidence for a repressor that interacts with and regulates the nuclear receptor coactivator PGC-1. Association with the repressor requires a PGC-1 protein interface that is similar to the one used by nuclear receptors. Removal of the(More)
Drug resistance of pathogens is an increasing problem whose underlying mechanisms are not fully understood. Cellular uptake of the major drugs against Trypanosoma brucei spp., the causative agents of sleeping sickness, is thought to occur through an unusual, so far unidentified adenosine transporter. Saccharomyces cerevisiae was used in a functional screen(More)
The estrogen-related receptor alpha (ERRalpha) is one of the first orphan nuclear receptors identified. Still, we know little about the mechanisms that regulate its expression and its activity. In this study, we show that the transcriptional coactivator PGC-1, which is implicated in the control of energy metabolism, regulates ERRalpha at two levels. First,(More)
The transcriptional co-activator PGC-1alpha regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1alpha (NT-PGC-1alpha) produced by alternative 3' splicing that introduces an in-frame stop codon into PGC-1alpha mRNA. The expressed(More)
Estrogen-related receptor alpha (ERRalpha) is one of the first orphan nuclear receptors to be identified, yet its physiological functions are still unclear. We show here that ERRalpha is an effector of the transcriptional coactivator PGC-1alpha [peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha], and that it regulates the(More)
The peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms alpha, beta/delta, and gamma control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases(More)
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a tissue-specific coactivator that enhances the activity of many nuclear receptors and coordinates transcriptional programs important for energy metabolism. We describe here a novel PGC-1-related coactivator that is expressed in a similar tissue-specific manner as PGC-1, with the(More)
Brain metastases are among the most feared complications in breast cancer, as no therapy exists that prevents or eliminates breast cancer spreading to the brain. New therapeutic strategies depend on specific knowledge of tumor cell properties that allow breast cancer cell growth within the brain tissue. To provide information in this direction, we(More)
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle(More)