Anandhakumar Chandran

Learn More
Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA(More)
Mutation of KRAS is a key step in many cancers. Mutations occur most frequently at codon 12, but the targeting of KRAS is notoriously difficult. We recently demonstrated selective reduction in the volume of tumors harboring the KRAS codon 12 mutation in a mouse model by using an alkylating hairpin N-methylpyrrole-N-methylimidazole polyamide(More)
Synthetic molecules that bind sequence-specifically to DNA have been developed for varied biological applications, including anticancer activity, regulation of gene expression, and visualization of specific genomic regions. Increasing the number of base pairs targeted by synthetic molecules strengthens their sequence specificity. Our group has been working(More)
Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This(More)
Pyrrole-imidazole polyamides are versatile DNA minor groove binders and attractive therapeutic options against oncological targets, especially upon functionalization with an alkylating agent such as seco-CBI. These molecules also provide an alternative for oncogenes deemed "undruggable" at the protein level, where the absence of solvent-accessible pockets(More)
One of the major goals in DNA-based personalized medicine is the development of sequence-specific small molecules to target the genome. SAHA-PIPs belong to such class of small molecule. In the context of the complex eukaryotic genome, the differential biological effects of SAHA-PIPs are unclear. This question can be addressed by identifying the binding(More)
With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive(More)
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the(More)
Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in(More)
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However,(More)