Anandalakshmi Venkatraman

Learn More
Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function(More)
PURPOSE The single nucleotide polymorphisms (SNPs) rs1048661, rs3825942, and rs2165241 within the LOXL1 gene were recently found to confer risk of pseudoexfoliation glaucoma (XFG) through pseudoexfoliation syndrome (XFS) in Caucasians. The purpose of this study was to test this association in Japanese subjects with XFS/XFG. METHODS Japanese subjects with(More)
PURPOSE Single nucleotide polymorphisms (SNPs) within the lysyl oxidase like-1 gene (LOXL1; rs1048661 and rs3825942) were found to confer risk to pseudoexfoliation glaucoma (XFG) through the pseudoexfoliation syndrome (XFS) in Nordic, Caucasian, and two Asiatic populations (Indian and Japanese). The prevalence (0.2%-0.7%) of XFS in the Chinese is(More)
The endothelial (posterior) corneal dystrophies, which result from primary endothelial dysfunction, include Fuchs endothelial corneal dystrophy (FECD), posterior polymorphous corneal dystrophy (PPCD) and congenital hereditary endothelial dystrophy (CHED). Mutations in SLC4A11 gene have been recently identified in patients with recessive CHED (CHED2). In(More)
PURPOSE The genetic basis of primary angle closure glaucoma (PACG) has yet to be elucidated. Ocular characteristics related to PACG such as short hyperopic eyes with shallow anterior chambers suggest the involvement of genes that regulate ocular size. CHX10, a retinal homeobox gene associated with microphthalmia, and MFRP, the membrane-type frizzled-related(More)
BACKGROUND/AIMS Age-related macular degeneration (AMD) is a leading cause of visual impairment. A single-nucleotide polymorphism (SNP; rs3775291) in the Toll-like receptor 3 (TLR3) gene has recently been implicated in the pathogenesis of AMD in Caucasian populations. The aim of this study was to examine this association in Chinese persons with choroidal(More)
PURPOSE To analyze for the presence of lipids in conjunctival fibroblasts of a patient with Schnyder corneal dystrophy (SCD). METHODS A proband with SCD was identified, and the pedigree was examined. The proband underwent an automated lamellar therapeutic keratoplasty (ALTK). At the same time, the proband underwent a skin and conjunctival biopsy.(More)
PURPOSE To investigate the effects of SLC4A11 gene depletion in human corneal endothelial cells. METHODS To achieve stable downregulation of SLC4A11 gene expression in immortalized human corneal endothelial cells (HCECs), short-hairpin RNA (shRNA) targeted against SLC4A11 was used. Cell growth and viability were determined using the real-time cell(More)
TGFBI-associated corneal dystrophies are characterized by accumulation of insoluble deposits of the mutant protein transforming growth factor β-induced protein (TGFBIp) in the cornea. Depending on the nature of mutation, the lesions appear as granular (non-amyloid) or lattice lines (amyloid) in the Bowman's layer or in the stroma. This review article(More)
Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4(th)_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic(More)