Anand Yethiraj

Learn More
Monodisperse colloidal suspensions of micrometre-sized spheres are playing an increasingly important role as model systems to study, in real space, a variety of phenomena in condensed matter physics--such as glass transitions and crystal nucleation. But to date, no quantitative real-space studies have been performed on crystal melting, or have investigated(More)
We have studied, with quantitative confocal microscopy, epitaxial colloidal crystal growth of particles interacting with an almost hard-sphere (HS) potential in a gravitational field and density matched colloids interacting with a long-range (LR) repulsive potential with a body-centred cubic (BCC) equilibrium crystal phase. We show that in both cases it is(More)
Fabricating large single crystals with colloidal spheres as building blocks is challenging and of competitive interest. Spin-coating of colloids offers a robust technique, which is highly reproducible in obtaining colloidal crystals even at fast dynamical regimes; however, these crystals are intrinsically polycrystalline due to the axial symmetry of(More)
  • 1