Learn More
Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the(More)
While disorders of neuronal migration are associated with as much as 25% of recurrent childhood seizures, few of the genes required to establish neuronal position in cerebral cortex are known. Subcortical band heterotopia (SBH) and lissencephaly (LIS), two distinct neuronal migration disorders producing epilepsy and variable cognitive impairment, can be(More)
BACKGROUND Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources. RESULTS In this study, we have compiled a(More)
Mutations in the EDA gene cause anhidrotic ectodermal dysplasia (EDA), with lesions in skin appendage formation. To begin to analyze EDA pathways, we have used expression profiling on 15,000-gene mouse cDNA microarrays, comparing adult mouse skin from wild-type, EDA-defective (Tabby) mice, and Tabby mice supplemented with the EDA-A1 isoform, which is(More)
Subcortical band heterotopia (SBH) and classical lissencephaly (LIS) result from deficient neuronal migration which causes mental retardation and epilepsy. A single LIS/SBH locus on Xq22.3-q24 was mapped by linkage analysis and physical mapping of the breakpoint in an X;2 translocation. A recently identified gene, doublecortin ( DCX ), is expressed in fetal(More)
Mutations in the human doublecortin (DCX), a brain-specific putative signaling protein, cause X-linked lissencephaly and subcortical band heterotopia. A predicted 740-amino-acid protein from human brain has two distinct regions, an N-terminal 345-amino-acid region 78% similar to the DCX protein and a C-terminal 427-amino-acid region that contains two(More)
Muscle-eye-brain disease (MEB), is caused by mutations in the POMGnT1 gene. We describe a white family with two siblings affected with congenital hypotonia early-onset glaucoma, and psychomotor delays. Brain magnetic resonance images (MRIs) showed hydrocephalus, bilateral frontal polymicrogyria, abnormal cerebellum, and characteristic flattened dystrophic(More)
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common developmental disorders present in humans. Combined, they affect between 3 and 5% of the population. Additionally, they can be found together in the same individual thereby complicating treatment. The causative factors (genes, epigenetic and environmental) are quite varied(More)
Hyperekplexia (MIM #149400) is a rare neurological disorder characterized by an exaggerated startle response, infantile hypertonia and hyperreflexia without spasticity, a hesitant gait that usually improves by 3 years of age, and nocturnal myoclonus. Familial hyperekplexia is usually autosomal dominant resulting from mutations in the inhibitory glycine(More)
EDA splice isoforms EDA-A1 and EDA-A2 belong to the TNF ligand family and regulate skin appendage formation by activating NF-kappa B- and JNK- promoted transcription. To analyze their action further, we conditionally expressed the isoforms as tetracycline ('Tet')-regulated transgenes in Tabby (EDA-negative) and wild-type mice. Expression of only the mEDA-A1(More)