Learn More
A high affinity glutathione transporter has been identified, cloned, and characterized from the yeast Saccharomyces cerevisiae. This transporter, Hgt1p, represents the first high affinity glutathione transporter to be described from any system so far. The strategy for the identification involved investigating candidate glutathione transporters from the(More)
Uptake and compartmentation of reduced glutathione (GSH), oxidized glutathione (GSSG), and glutathione conjugates are important for many functions including sulfur transport, resistance against biotic and abiotic stresses, and developmental processes. Complementation of a yeast (Saccharomyces cerevisiae) mutant (hgt1) deficient in glutathione transport was(More)
Saccharomyces cerevisiae Bpt1p is an ATP-binding cassette (ABC) protein that belongs to the MRP subfamily and is a close homologue of the glutathione conjugate (GS conjugate) transporter Ycf1p. The function of Bpt1p has previously been evaluated only in vitro, by using nonphysiological substrates. In the present study we examined the localization,(More)
Glutathione contributes to thiol-redox control and to extra-mitochondrial iron-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both(More)
ChaC1 is a mammalian proapoptic protein of unknown function induced during endoplasmic reticulum stress. We show using in vivo studies and novel in vitro assays that the ChaC family of proteins function as γ-glutamyl cyclotransferases acting specifically to degrade glutathione but not other γ-glutamyl peptides. The overexpression of these proteins (but not(More)
Mutants in the adenine biosynthetic pathway of yeasts (ade1 and ade2 of Saccharomyces cerevisiae, ade6 and ade7 of Schizosaccharomyces pombe) accumulate an intense red pigment in their vacuoles when grown under adenine-limiting conditions. The precise events that determine the formation of the pigment are however, still unknown. We have begun a genetic(More)
The glutathione-mediated pathway for the detoxification of endogenously and exogenously derived toxic compounds was investigated using a pigment that accumulates in certain adenine biosynthetic mutants of yeasts. The ade1 / ade2 mutants of Saccharomyces cerevisiae, when grown on adenine-limiting medium, accumulate a characteristic red pigment (ade pigment)(More)
Strains bearing the vph2 mutation are defective in vacuolar acidification. The VPH2 gene was isolated from a genomic DNA library by complementation of the zinc-sensitive phenotype of the mutant. Deletion analysis localized the complementing activity to a 1.2 kb DNA fragment. Sequence analysis of this fragment revealed the presence of a single open reading(More)
Glutathione (GSH), L-gamma-glutamyl-L-cysteinyl-glycine, is the major low-molecular-weight thiol compound present in almost all eukaryotic cells. GSH degradation proceeds through the gamma-glutamyl cycle that is initiated, in all organisms, by the action of gamma-glutamyl transpeptidase. A novel pathway for the degradation of GSH that requires the(More)
OXP1/YKL215c, an uncharacterized ORF of Saccharomyces cerevisiae, encodes a functional ATP-dependent 5-oxoprolinase of 1286 amino acids. The yeast 5-oxoprolinase activity was demonstrated in vivo by utilization of 5-oxoproline as a source of glutamate and OTC, a 5-oxoproline sulfur analogue, as a source of sulfur in cells overexpressing OXP1. In vitro(More)