Anand Jagota

Learn More
Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation(More)
Wrapping of carbon nanotubes (CNTs) by single-stranded DNA (ssDNA) was found to be sequence-dependent. A systematic search of the ssDNA library selected a sequence d(GT)n, n = 10 to 45 that self-assembles into a helical structure around individual nanotubes in such a way that the electrostatics of the DNA-CNT hybrid depends on tube diameter and electronic(More)
Many organisms have evolved a fibrillated interface for contact and adhesion as shown by several of the papers in this issue. For example, in the Gecko, this structure appears to give them the ability to adhere and separate from a variety of surfaces by relying only on weak van der Waals forces. Despite the low intrinsic energy of separating surfaces held(More)
This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0 <or= Phi(chi) <or= 1 and chi is(More)
Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of(More)
Because of their extraordinary electronic and mechanical properties, carbon nanotubes have great potential as materials for applications ranging from molecular electronics to ultrasensitive biosensors. Biological molecules interacting with carbon nanotubes provide them with specific chemical handles that would make several of these applications possible.(More)
Citation French, Roger H. et al. "Long range interactions in nanoscale science. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story(More)
We measured the force required to peel single-stranded DNA molecules from single-crystal graphite using chemical force microscopy. Force traces during retraction of a tip chemically modified with oligonucleotides displayed characteristic plateaus with abrupt force jumps, which we interpreted as a steady state peeling process punctuated by complete(More)
Microcontact printing (microCP) is an effective way to generate micrometer- or submicrometer-sized patterns on a variety of substrates. However, the fidelity of the final pattern depends critically on the coupled phenomena of stamp deformation, fluid transfer between surfaces, and the ability of the ink to self-assemble on the substrate. In particular,(More)
Several applications of single-walled carbon nanotubes (SWCNT) as nanovectors in biological systems have been reported, and several molecular pathways of cellular entry have been proposed. We employed transmission electron microscopy, confocal fluorescent microscopy, and UV-vis spectroscopic analysis to confirm the internalization of DNA-SWCNT in human(More)