Anabel M M Miguelez Fernández

Learn More
The region that surrounds the central canal (CC) in the turtle spinal cord is a neurogenic niche immersed within already functional circuits, where radial glia expressing brain lipid binding protein (BLBP) behave as progenitors. The behaviour of both progenitors and neuroblasts within adult neurogenic niches must be regulated to maintain the functional(More)
BACKGROUND We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited(More)
The cells lining the central canal (CC) of the spinal cord derive from the ventral part of the neural tube and, in some vertebrates, are responsible for the functional recovery after spinal cord injury. The region that surrounds the CC in the turtle contains proliferating cells that seem to generate both glia and neurons. Understanding the biology of spinal(More)
Astrocytes are a target for steroid hormones and for steroids produced by the nervous system (neurosteroids). The effect of gonadal hormones and several neurosteroids in the formation of gliotic tissue has been assessed in adult male rats after a penetrating wound of the cerebral cortex and the hippocampal formation. The hormones testosterone,(More)
Glutaric acid (GA) is a neurotoxic metabolite that accumulates in the CNS of patients with glutaric acidemia-I (GA-I), a neurometabolic disease caused by deficient activity of glutaryl-CoA dehydrogenase. Most GA-I patients display characteristic CNS lesions, mainly in the gray and white matter of basal ganglia and cerebral cortex. Neurons and astrocytes are(More)
Whereas most previous studies on emotion in language have focussed on single words, we investigated the influence of the emotional valence of a word on the syntactic and semantic processes unfolding during sentence comprehension, by means of event-related brain potentials (ERP). Experiment 1 assessed how positive, negative, and neutral adjectives that could(More)
In lower vertebrates, some cells contacting the central canal (CC) retain the ability to proliferate, leading the reconstruction of the spinal cord after injury. A better understanding about the nature of these cells could contribute to the development of novel strategies for spinal cord repair. Here, by combining light and electron microscopy,(More)
The spinal cords and brains--comprising dorsal cortex (DC), medial cortex (MC) and diencephalon (Dien)--of juvenile turtles acclimated to warm temperature [27-30 degrees C; warm-acclimated turtles (WATs)] revealed higher density values of bromodeoxyuridine-labeled cells (BrdU-LCs) than those acclimated to a cooler environment [5-14 degrees C;(More)
This paper deals with the cytological organization of the central gelatinosa (CG) in the spinal cord of juvenile (2-12 months) turtles. We found two main cell classes in the CG: one with characteristics of immature neurons, the other identified as radial glia (RG). The cells surrounding the central canal formed radial conglomerates in such a way that the RG(More)
Astrocytes play crucial roles in maintaining brain homeostasis and in orchestrating neural development, all through tightly coordinated steps that cooperate to maintain the balance needed for normal development. Here, we review the alterations in astrocyte functions that contribute to a variety of developmental neurometabolic disorders and provide(More)