Learn More
Ten flavone glycosides have been isolated and identified in aerial parts of alfalfa. These included six tricin, one 3'-O-methyltricetin, and three chrysoeriol glycosides. Most of these compounds were acylated with ferulic, coumaric, or sinapic acids, and acylation occurred on the terminal glucuronic acid. Eight of these compounds, including(More)
Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass) are highly problematic weeds affecting a wide variety of cereal crops worldwide. The fact that both of these weeds have developed resistance to several herbicide groups made them optimal candidates as target organisms for ongoing research about the potential application of allelochemicals(More)
Benzoxazinoids have been described as important allelochemicals from Gramineae as well as Acanthaceae, Rannunculaceae, and Scrophulariaceae plants. Several bioactivities have been described and evaluated for these compounds, including fungistatic, antifeedant, and phytotoxic. In ongoing studies about allelochemicals as natural herbicide models, the(More)
Compounds with a (2H)-1,4-benzoxazin-3(4H)-one skeleton have attracted the attention of phytochemistry researchers since 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) were isolated from plants belonging to the Poaceae family. These compounds exhibit interesting biological properties,(More)
Wheat (Triticum aestivum L.) has been found to possess allelopathic potential and studies have been conduced to apply wheat allelopathy for biological weed control. 2,4-Dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) is a common product found in wheat, corn, and rye exudates and it can be released to the environment by that way. In this report, the(More)
Benzoxazinones 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) have been considered key compounds for understanding allelopathic phenomena in Gramineae crop plants such as corn (Zea mays L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.). The degradation processes in the(More)
Three new triterpenoid saponins (1-3), along with nine known saponins, were isolated from the roots of Saponaria officinalis L. Two of them: vaccaroside D (4) and dianchinenoside B (5) are known, but not previously reported for S. officinalis, and seven others: saponarioside C (6), D (7), F (8), G (9), I (10), K (11), and L (12) have been previously(More)
Natural products involved in plant-plant and plant-microorganism ecological interaction (Allelochemicals) are an important potential source for alternative agrochemicals and pharmaceuticals, in order to solve the many problems derived from inadequate culture practices and abuse of synthetic herbicides. Isolation, structural determination, bioassay(More)