Learn More
Organic solvents can be toxic to microorganisms, depending on the inherent toxicity of the solvent and the intrinsic tolerance of the bacterial species and strains. The toxicity of a given solvent correlates with the logarithm of its partition coefficient in n-octanol and water (log Pow). Organic solvents with a log Pow between 1.5 and 4.0 are extremely(More)
The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes. The solvent-tolerant P. putida DOT-T1E grows in the presence of high concentrations (e.g., 1% [vol/vol]) of toluene and octanol. Growth of P. putida DOT-T1E cells in LB in the presence of toluene supplied(More)
In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if(More)
A new type of antimicrobial peptide, snakin-1 (SN1), has been isolated from potato tubers and found to be active, at concentrations < 10 microM, against bacterial and fungal pathogens from potato and other plant species. The action of SN1 and potato defensin PTH1 was synergistic against the bacterium Clavibacter michiganensis subsp. sepedonicus and additive(More)
Four homogeneous proteins (Cw18, Cw20, Cw21, Cw22) were isolated from etiolated barley leaves by extraction of the insoluble pellet from a Tris-HCl (pH 7.5) homogenate with 1.5 M LiCl and fractionation by reverse-phase high-performance liquid chromatography. All 4 proteins inhibited growth of the pathogen Clavibacter michiganensis subsp. sepedonicus (EC50s(More)
The peptide snakin-2 (StSN2) has been isolated from potato (Solanum tuberosum cv Jaerla) tubers and found to be active (EC(50) = 1-20 microM) against fungal and bacterial plant pathogens. It causes a rapid aggregation of both Gram-positive and Gram-negative bacteria. The corresponding StSN2 cDNA encodes a signal sequence followed by a 15-residue acidic(More)
Pseudomonas putida DOT-T1E has the capacity to grow in the presence of high concentrations of toluene. This ability is mainly conferred by an efflux pump encoded in a self-transmissible 133 kb plasmid named pGRT1. Sequence analysis of the pGRT1 plasmid revealed several key features. Most of the genes related to the plasmid maintenance functions show(More)
The Acinetobacter pcaIJFBDKCHG operon encodes the six enzymes that convert protocatechuate to citric acid cycle intermediates. Directly downstream from the operon are qui and pob genes encoding sets of enzymes that convert quinate and p-hydroxybenzoate, respectively, to protocatechuate. Prior to this investigation, the only known regulatory gene in the(More)
Isomerization of cis to trans unsaturated fatty acids is a mechanism enabling Gram-negative bacteria belonging to the genera Pseudomonas and Vibrio to adapt to several forms of environmental stress. The extent of the isomerization apparently correlates with the fluidity effects caused, i.e. by an increase in temperature or the accumulation of membrane-toxic(More)
Antimicrobial peptides (So-D1-7) were isolated from a crude cell wall preparation from spinach leaves (Spinacia oleracea cv. Matador) and, judged from their amino acid sequences, six of them (So-D2-7) represented a novel structural subfamily of plant defensins (group IV). Group-IV defensins were also functionally distinct from those of groups I-III. They(More)