Ana Rute Neves

Learn More
The wide application of lactic acid bacteria in the production of fermented foods depends to a great extent on the unique features of sugar metabolism in these organisms. The relative metabolic simplicity and the availability of genetic tools made Lactococcus lactis the organism of choice to gain insight into metabolic and regulatory networks. In vivo(More)
The metabolism of glucose by nongrowing cells of L. lactis strain MG5267 was studied under controlled conditions of pH, temperature, and gas atmosphere (anaerobic and aerobic) using a circulating system coupled to nuclear magnetic resonance (NMR) detection that allowed a noninvasive determination of intracellular pools of intermediate metabolites by 13C-NMR(More)
Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTS(Mtl)). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a(More)
The unexpectedly long, and still unfinished, path towards a reliable mathematical model of glycolysis and its regulation in Lactococcus lactis is described. The model of this comparatively simple pathway was to be deduced from in vivo nuclear magnetic resonance time-series measurements of the key glycolytic metabolites. As to be expected from any nonlinear(More)
The combination of high-throughput methods of molecular biology with advanced mathematical and computational techniques has propelled the emergent field of systems biology into a position of prominence. Unthinkable a decade ago, it has become possible to screen and analyze the expression of entire genomes, simultaneously assess large numbers of proteins and(More)
The metabolism of glucose by nongrowing cells of Lactococcus lactis strain FI7851, constructed from the wild-type L. lactis strain MG1363 by disruption of the lactate dehydrogenase (ldh) gene [Gasson, M.J., Benson, K., Swindel, S. & Griffin, H. (1996) Lait 76, 33-40] was studied in a noninvasive manner by 13C-NMR. The kinetics of the build-up and(More)
Three isogenic strains of Lactococcus lactis with different levels of H(2)O-forming NADH oxidase activity were used to study the effect of oxygen on glucose metabolism: the parent strain L. lactis MG1363, a NOX(-) strain harboring a deletion of the gene coding for H(2)O-forming NADH oxidase, and a NOX(+) strain with the NADH oxidase activity enhanced by(More)
The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid(More)
Lactococcus lactis subsp. lactis biovar diacetylactis CRL264 is a natural strain isolated from cheese (F. Sesma, D. Gardiol, A. P. de Ruiz Holgado, and D. de Mendoza, Appl. Environ. Microbiol. 56:2099-2103, 1990). The effect of citrate on the growth parameters at a very acidic pH value was studied with this strain and with derivatives whose citrate uptake(More)
According to previous reports, Lactococcus lactis imports glucose via two distinct phosphoenolpyruvate:phosphotransferase systems (mannose-PTS and cellobiose-PTS) and one or more unknown non-PTS permease(s). GlcU was identified as the sole non-PTS permease involved in the transport of glucose. Additionally, the biochemical properties of PTS(Man), PTS(Cel)(More)