Learn More
Early growth response factor-1 (EGR-1) is an immediate early gene, which is rapidly activated in quiescent cells by mitogens or in postmitotic neurons after depolarization. EGR-1 has been involved in diverse biological functions such as cell growth, differentiation and apoptosis. Here we report that enforced expression of the EGR-1 gene induces apoptosis,(More)
We have determined the concentration of thyroid hormone receptor binding sites in nuclear extracts derived from rat fetal organs throughout gestation and the postnatal period. Before day 14 of gestation nuclear extracts were obtained from whole fetuses. No receptor binding activity could be detected at day 12 of gestational age, and small amounts were(More)
In most neurodegenerative disorders, including multiple sclerosis, Parkinson disease, and Alzheimer disease, a massive neuronal cell death occurs as a consequence of an uncontrolled inflammatory response, where activated astrocytes and microglia and their cytotoxic agents play a crucial pathological role. Current treatments for these diseases are not(More)
To define at the molecular biological level the effects of thyroid hormone on brain development we have examined cDNA clones of brain mRNAs and identified several whose expression is altered in hypothyroid animals during the neonatal period. Clones were identified with probes prepared by subtractive or differential hybridization, and those corresponding to(More)
CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a transcription factor that plays an important role in regulating cell growth and differentiation. This protein plays a central role in lymphocyte and adipocyte differentiation and hepatic regeneration and in the control of inflammation and immunity in the liver and in cells of the myelomonocytic lineage.(More)
Inflammation and neurodegeneration coexist in many acute damage and chronic CNS disorders (e.g., stroke, Alzheimer's disease, Parkinson's disease). A well characterized animal model of brain damage involves administration of kainic acid, which causes limbic seizure activity and subsequent neuronal death, especially in the CA1 and CA3 pyramidal cells and(More)
15-Deoxi-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is known to play an important role in the pathophysiology of carcinogenesis, however, the molecular mechanisms underlying these effects are not yet fully understood. Recently, we have shown that 15d-PGJ(2) is a potent inducer of breast cancer cell death and that this effect is associated with a(More)
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in(More)
We recently demonstrated that thyroid hormone is an important regulator of mitochondrial gene expression during brain development. To gain further insights into the consequences of this regulation, we have performed functional and structural analysis of brain mitochondria from control and hypothyroid neonatal rats. Flow cytometric analysis showed a(More)
Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular(More)