Learn More
The initiation of most cytotoxic immune responses requires MHC class I-restricted presentation of internalized antigens to CD8(+) T lymphocytes, a process called cross-presentation. In dendritic cells (DC), the only antigen-presenting cells that activate naive T cells, cross-presentation is particularly efficient after internalization of opsonized antigens(More)
Major histocompatibility complex class II antigen presentation requires the participation of lysosomal proteases in two convergent processes. First, the antigens endocytosed by the antigen-presenting cells must be broken down into antigenic peptides. Second, class II molecules are synthesized with their peptide-binding site blocked by invariant chain (Ii),(More)
The p41 splice variant of major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains a 65 aa segment that binds to the active site of cathepsin L (CatL), a lysosomal cysteine protease involved in MHC class II-restricted antigen presentation. This segment is absent from the predominant form of Ii, p31. Here we document the in(More)
We have analyzed the intracellular degradation of an immune complex after its FcgammaR-mediated uptake in antigen-presenting cells (APC). Mice that lack the cathepsins (Cat) S, L, B and D allowed us to assess the direct contribution of these individual proteases to the processing events observed. CatS and CatB mediate the bulk of degradation of the(More)
NK1.1(+) T cells develop and function through interactions with cell surface CD1 complexes. In I-A(b) mice lacking the invariant chain (Ii) processing enzyme, cathepsin S, NK1.1(+) T cell selection and function are impaired. In vitro, thymic dendritic cells (DCs) from cathepsin S(-/-) mice exhibit defective presentation of the CD1-restricted antigen,(More)
Although HLA-DQ8 has been implicated as a key determinant of genetic susceptibility to human type 1 diabetes, spontaneous diabetes has been observed in HLA-DQ8 transgenic mice that lack expression of murine MHC class II molecules (mII(-/-)) only when the potent costimulatory molecule, B7.1, is transgenically expressed on pancreatic beta cells. To study the(More)
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell(More)
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on Major Histocompatibility complex (MHC) class II molecules, to CD4(+) T cells is a crucial part of the adaptive immune response. This allows T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers(More)
  • 1