Learn More
Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin. Cohesin's Scc1, Smc1 and Smc3 subunits form a tripartite ring structure, and it has been proposed that cohesin holds sister DNA molecules together by trapping them inside its ring. To test this, we used site-specific crosslinking to(More)
The contribution of DNA catenation to sister chromatid cohesion is unclear partly because it has never been observed directly within mitotic chromosomes. Differential sedimentation-velocity and gel electrophoresis reveal that sisters of 26 kb circular minichromosomes are held together by catenation as well as by cohesin. The finding that chemical(More)
BACKGROUND The cohesin complex that mediates sister chromatid cohesion contains three core subunits: Smc1, Smc3, and Scc1. Heterotypic interactions between Smc1 and Smc3 dimerization domains create stable V-shaped Smc1/Smc3 heterodimers with a hinge at the center and nucleotide-binding domains (NBDs) at the ends of each arm. Interconnection of each NBD(More)
This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher's website. access to the(More)
  • 1